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QED corrections to hadronic decays on the lattice




are QED radiative corrections phenomenologically relevant?

FLAG, arXiv:1902.08191
PDG review, j.rosner, s.stone, r.van de water, 2016
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® in the case of pions and kaons, QED corrections can be
® from the last FLAG review we have calculated in x-pt by estimating the relevant low-energy
constants
fﬂ-:(: = 130.2(0.8) MeV , §=0.6%,

SQepllr~ — to(y)] =1.8%,

frex =155.7(0.3)MeV, 6 =0.2%,
SorpT[K™ — to(y)] = 1.1%,

f1(0) = 0.9706(27) , 5 =0.3%
sorpT[K — mto(+)] = [0.5,3]%

® at this level of precision QED radiative corrections must be included!



are QED radiative corrections pkt logically rel ?

® the most precise value of V4 comes from
super-allowed nuclear 3-decays (j.hardy, i.towner,
Phys.Rev. €91 (2015)) and the associated QED

radiative corrections have an impact on the first-row

CKM unitarity check

® by using lattice data for fi / fr and the
phenomenological estimate of w.marciano, a.sirlin,
Phys.Rev.Lett. 96 (2006)

ST [Vayl® =0.9999(5)
f=d,s,b

® by using c-y.seng et al., Phys.Rev.Lett. 121 (2018)

ST [Vuyl® =0.9988(4)
f=d,s,b

® by using a.czarnecki et al., Phys.Rev. D100 (2019)

ST [Vayl® = 0.9992(4)
f=d,s,b

® a first-principles calculation is needed here!
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are QED radiative corrections phenomenologically relevant?

~ T T
=) [ B HFLAV average Ax?=1.0contours
& g4 =
[ LHCbis ]
035 Y 3
r LHCh1E ]
B [B — D(*)TIDT} 03 ’ 3
RDWy=—L ] E 7
B [B - D<*>zae} E ]
0.25 = =
E Bl 3
02—
C_. 1 PR
0.2

R(D)

® presently there are tensions between SM-theory and experiment in observables checking lepton-flavour universality, see
f.archilli and m.rotondo talks

® the bulk of the hadronic uncertainties cancel in the ratios but QED radiative corrections are sensitive to the lepton
mass and new hadronic quantities are needed at O ()

® QED effects are taken into account by using PHOTOS but it is not excluded that an improved treatment can have an
impact, s.de Boer et al PRL 120 (2018), s.cali et al EPJ C79 (2019)

® the analysis of s.de Boer et al PRL 120 (2018) used what in the following is called the point-like effective theory



QED radiative corrections on the lattice

including QED radiative corrections in a non-perturbative
lattice calculation is a challenging problem!

® QED is a long-range unconfined interaction that needs
to be consistently defined on a finite volume a o/,‘-
] o ) *] o o
® finite-volume effects are potentially very large, e.g. of 4 < 4
O(L™1) in the case of the masses of stable hadrons #
o Q. ] Q@ 9
o o *] o J
® in the case of decay rates the problem is much more =: : :
involved because of the appearance of infrared 95 4 [ Rd
divergences, O (log(L)), at intermediate stages of the
calculation: the infrared problem! ao o a a4
L d
9 Q, J
® from the numerical point of view, it is difficult to 3
disentangle QED radiative corrections from the leading 9 i D 9 Q
QCD contributions that, b.t.w., needs to be properly -/00 o 4 9 oor og\r
defined “’. g

® as for any other observable on the lattice, QED radiative
corrections have to be extracted from euclidean
correlators



disentangling QED corrections

RM123, JHEP 1204 (2012)
RM123, PRD 87 (2013)

® once QCD has been defined, QED radiative corrections can be calculated directly or by expanding the lattice
path-integral with respect to o ~ (mgq — my)/AQcD

_gfull o) <efsQCD (e—AS O) )

O(gs) = “——rr = = 0(g)) + a0
(e—sTully (e=SQED (c—asyy

® the building-blocks for the graphical notation, used as a device to do calculations, are the corrections to the quark
propagator
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disentangling QED corrections

RM123, JHEP 1204 (2012)
RM123, PRD 87 (2013)

® once QCD has been defined, QED radiative corrections can be calculated directly or by expanding the lattice
path-integral with respect to o ~ (mg — ma)/AQoD

—sfull 0) <5—SQOD (E—As o) y
O(gs) = — = = 0(@g)) +40
<e—sf i ) { e—SQCD (e=ASY)

® vacuum polarization effects are the numerical issue with our method

A—>—F_
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lattice calculation of the O («) QED radiative corrections to P — £i(7y)

RM123+SOTON collaboration: m.di carlo, d.giusti, v.lubicz, g.martinelli, c.t.sachrajda, f.sanfilippo, s.simula, c.tarantino, n.t.
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® i'm now going to show some results of our non-perturbative lattice calculation of the O(«) QED radiative corrections to
the decay rates P +— (i (y)

® both the theoretical and numerical results discussed below are the outcome of a big effort of the RM1234+SOTON
collaboration started in 2015 with contributions from other colleagues (m.testa, ...)

® the problem is particularly involved (much more than in the case of the spectrum) because of the appearance of infrared
divergences that cancel in physical observables by summing virtual and real photon contributions

f.bloch, a.nordsieck, Phys.Rev. 52 (1937)

t.d.lee, m.nauenberg, Phys.Rev. 133 (1964)

p.p.kulish, I.d.faddeev, Theor.Math.Phys. 4 (1970)



the RM1234+SOTON method

RM123+SOTON, PRD 91 (2015)

® let's consider the infrared-safe observable: at O(«) this is obtained by considering the real contributions with a single
photon in the final state

I(E) =Tg+ €2 Jim {Ty (L) + Tr(L, B)}

® the finite-volume calculation of the real contribution is an issue, momenta are quantized! more to say later on this. ..



the RM1234+SOTON method

RM123+SOTON, PRD 91 (2015)

let's consider the infrared-safe observable: at O(«) this is obtained by considering the real contributions with a single
photon in the final state

2 ..
I'(E)=Tg+e” lim {I'yv(L)+Tgr(L,E)}
L— oo
the finite-volume calculation of the real contribution is an issue, momenta are quantized! more to say later on this. ..

for this reason, by relying on the universality of infrared divergences, it is convenient to rewrite the previous formula as

=0

D(E) =To+¢” lim Ty (L) =T{ (L) + TY(L) + T (L, B) = T} (L, B) +T R (L, E)

where Fz\j/tR are evaluated in the point-like effective theory: these have the same infrared behaviour of I'y



the RM1234+SOTON method

RM123+SOTON, PRD 91 (2015)

let's consider the infrared-safe observable: at O () this is obtained by considering the real contributions with a single
photon in the final state

T(E)=To+¢” lim {Ty(L)+Tr(L,E)}

the finite-volume calculation of the real contribution is an issue, momenta are quantized! more to say later on this. ..

for this reason, by relying on the universality of infrared divergences, it is convenient to rewrite the previous formula as

2

2 . ~SD 2 . t t . SD
I(B) =To+e? lim I97 (L) +e mlj{rio{l"@ (M) + D! (mw,E)}Jre i TR (m, E)

where T2}

V. are evaluated in the point-like effective theory: these have the same infrared behaviour of T'y,

in the limit of very small photon energies F%D (E) is negligible because very soft photons cannot resolve the internal
structure of an hadron



our result for DK™ — pv, (9)]/T[r™ = pou(y)]

® with this method, our result for
Ip(B) =T% {1+ 8Rp(E)} ,
SRKk. =0RK (ER®™) — R (ET")
is the following

SRk
= —0.0122(10)% (2)t*" (8)X(5) ¥ (4)% (6) 19 F P

= —0.0122(16)

® this can (with a caveat concerning the definition of
QCD) be compared with the result currently quoted by
the PDG and obtained in v.cirigliano and h.neufeld, PLB 700
(2011)

SRy = —0.0112(21)

RM123+SOTON, PRL 120 (2018)

0.000

X physical point A 5-1.90, U/a= 40 (FVEcom)  — continuum it
©0-190,Ua-20(FVEcor) M pa195L/a=24(FVEcor)  -=fitatp=190
W - 190,L/a-24 (FVEcom) @ B-195Ua-32(VEcom)  -—ftatp-195
®5-190,Ua=32(VEcor) @ p=210,Ua=48(VEcom)  --fitatp=210
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0015 L L
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m - (Gev)

ETMC gauge configurations
ng=1+414+1+1

a > 0.0619(18) fm

Mg > 223(6) MeV
maL < 5.8



our result for T[K ™ — pwy,(v)] and T[n ™ — piy, (v)]

RM123+SOTON, PRL 120 (2018), PRD 100 (2019)

® by defining

003 75 5190, L/a- 2 1 continuum lmit| ]
) O 190,Us- Lteap-150
I'p(E) =Tp {1+ 6Rp(E)} , ouon erres
Ap-10.Ua-40 ~teatp-210
0% T By ssaaas - 1.95, L/a = 24 (FVE corr) X physical point
O p=195L/a-32 @ =195, L/a = 32 (FVE corr)
o QO §-210,L/a~-48 ®=210/a=
® our result are
i
meE
SRk (ER®) = 0.0024(10) K-> vy
000 o1 002 003 004 005
My (GeV)
max
§RW(E7\_ ) = 0.0153(19)
004 5 Te0 e e
fratn 1.0
e
fratp-2r
® this can (remember the caveat concerning the definition SO e uanaa - 1.95,Ua - 24 (VE cor) X physical pont
. O p-195L/a=-32 @ = 1.95,L/a = 32 (FVE corr.)
of QCD) be compared with the result currently quoted o O 5-210.U/0m 18 @ 210, /0. 48 (FVE cor)
“ o002
by the PDG > 56
r/‘dg = )Q{'{ 0D
ool , o, oo THY
SR (ER®") = 0.0064(24) T v n
000 o1 o0z o 004 05
m  (GeV)

SR (E"*") =0.0176(21)



non-perturbative lattice calculation of P +— ¢y~

.
® i'll now show some results of our on-going 4
non-perturbative lattice calculation of the radiative
leptonic decay rates for the processes P +— £igp~y P
vy

the RM123+SOTON collaboration:

g-martinelli, University of Rome La Sapienza
f.mazzetti, University of Rome La Sapienza
m.di carlo, University of Rome La Sapienza

g-m.de divitiis, University of Rome Tor Vergata
a.desiderio, University of Rome Tor Vergata
r.frezzotti, University of Rome Tor Vergata
m.garofalo, INFN of Rome Tor Vergata

d.giusti, University of Roma Tre
v.lubicz, University of Roma Tre
f.sanfilippo, INFN of Roma Tre

s.simula, INFN of Roma Tre

c.t.sachrajda, University of Southampton



non-perturbative lattice calculation of P +— ¢y~
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® i'll now show some results of our on-going
3 ; . .. E— 50 300 E
non-perturbative lattice calculation of the radiative =
leptonic decay rates for the processes P +— £ip~y S.
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® as we have seen, in the region of small (soft) photon
energies these are needed to properly define the 00015
measurable infrared—safe purely leptonic decay rates
P — Lug(vy)

in our calculation, by using the xpt results
(v.cirigliano and i.rosell, PRL 99 (2007)), we estimated
the structure dependent real contribution to be,
nowadays, phenomenologically irrelevant for
P={n,K}and £ =p

I(E) —Tg

e

raP(E) < 0.002



non-perturbative lattice calculation of P +— ¢y~

® i'll now show some results of our on-going
non-perturbative lattice calculation of the radiative
leptonic decay rates for the processes P +— £ipy

® as we have seen, in the region of small (soft) photon
energies these are needed to properly define the
measurable infrared—safe purely leptonic decay rates
P — Lug(v)

® in the region of experimentally detectable (hard) photon
energies these represent important probes of the internal
structure of mesons and alternative (non helicity
suppressed) channels for the extraction of CKM matrix
elements

m.beneke, j.rohrwild Eur.Phys.J. C71 (2011)

p=(mp,0), Ey =0O(mp),

qufpmp 1
Fa v (By) = BB pg ,u>+o(—>
AV T B ) mp

1 :/de o¥(w, n)
Ap(n) 0 w



non-perturbative lattice calculation of P +— ¢y~

® the non-perturbative information needed to compute the
radiative decay-rates is encoded into the decay constant of the
meson and into two form-factors

) [ dty e T0li 01k, )| P() =

] My = 529 MeV
5L(k) - ipvw 8 . ' 0.0610 fm
mp ; s
6
L]
mpfp] (p-kg"" —plk®) s [
+ [FA + ] IS 8
p-k mp 4 ®

+mPfP P”Pa} : \

p-k  mp

. 0 02 04 06 08 1 12 14 16
® these can be expressed as functions of ., (and of mp) ’ ’

2p -k
Fa,v(zy), 0< zy =

mp

® the infrared divergent contribution (in red) is universal: it is
proportional to the amplitude with no photons (fp)



non-perturbative lattice calculation of P — (0,

® the non-perturbative information needed to compute the

radiative decay-rates is encoded into the decay constant of the K
meson and into two form-factors o008 [ ) ) ) T M contimuum 1
ChPt ——
0.06 | 4
4 . 0.04
T IR iye) . 3
€ (k) /d y e Y T(0]53 (0)58, (DI P(p) = = o0
0F 4
—0.02 1 4
na~B . . . . . . .
r . € k’ypﬁ 0 0.2 0.4 0.6 0.8 1 12 1.4
€#<k){77’FV7 o
mp
0.08 |- j j j j MPh, continuum  me |
0.06 ChPt ——
mpfp] (p- kgt — pHk®) ] ]
+ |Fa + _om
p-k mp 5 oml R
0F 4
mpfp pHp® e . . . . . . L]
- 0 0.2 04 0.6 0.8 1 12 14
p-k  mp 2
® these can be expressed as functions of x (and of mp) 0.08 - MEhv*, contimuum mmm

ChPt ——

2p - k
2
mp

Fav(zy), 0<zy = <1

® the infrared divergent contribution (in red) is universal: it is
proportional to the amplitude with no photons (fp)
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non-perturbative lattice calculation of P — (0,

® the non-perturbative information needed to compute the K
radiative decay-rates is encoded into the decay constant of the o6

. 6

meson and into two form-factors

MPM*, continuum -
0.14 1 ChPt ——

(k) [ aty eV Tl 013k, I P@) =

) etarBr_p
e;(k){ —imyy o PB .

m
P 0.16 T T T T

MP, continuum  me—

0.14 1 ChPt ——

'mPfP] (p-kgh™ —pHk®) : : 1

F
+[ A+ bk

mp

mpfp ptp®
p-k  mp

M2V continuum s

® these can be expressed as functions of x (and of mp) ,
0.14 ChPt —— o

2p - k
2
mp

Fav(zy), 0<zy = <1

® the infrared divergent contribution (in red) is universal: it is
proportional to the amplitude with no photons (fp) I



non-perturbative lattice calculation of P — (0,

MPME continuum ==




outlooks

® the calculation of the QED corrections to (radiative) leptonic
decays in the case of B mesons doesn’t present any
conceptual issue

® cutoff effects are the problem there but strategies to cope with
b-physics on the lattice exist and can be applied

® we also studied the case in which the photon is off-shell
(relevant for P~ + ¢+ ¢~ ¢~ i decays): two more form
factors enter the game that, at small virtuality, can be
calculated with small modifications of the procedure already
followed



outlooks

® the problem is more challenging in the case of semileptonic
decays because, for generic kinematical configurations, the
physical observable cannot be extracted from euclidean
correlators by the leading exponential contributions (the
maiani-testa problem)

=

® this is a big issue, particularly in the case of B decays,
because of the presence of many internal multi-hadron states
that can go on-shell with energies smaller than the energy of
the external meson-lepton

B0




outlooks

® the problem is more challenging in the case of semileptonic
decays because, for generic kinematical configurations, the
physical observable cannot be extracted from euclidean
correlators by the leading exponential contributions (the
maiani-testa problem)

® this is a big issue, particularly in the case of B decays,
because of the presence of many internal multi-hadron states
that can go on-shell with energies smaller than the energy of
the external meson-lepton

® on the other hand, the RM123+SOTON method to cope
with infrared divergences can be extended to the case of
semileptonic decays, we have already analyzed the problem in
great detail

=

B0




outlooks

the problem is more challenging in the case of semileptonic
decays because, for generic kinematical configurations, the
physical observable cannot be extracted from euclidean
correlators by the leading exponential contributions (the
maiani-testa problem)

this is a big issue, particularly in the case of B decays,
because of the presence of many internal multi-hadron states
that can go on-shell with energies smaller than the energy of
the external meson-lepton

on the other hand, the RM123+SOTON method to cope
with infrared divergences can be extended to the case of
semileptonic decays, we have already analyzed the problem in
great detail

moreover, the problem does not arise at the point (on the
boundary of the allowed phase-space)

sy = (pp —pv)? = (pp + 1) = (mp +my)?

at (around) this particular kinematical configuration, by
calling sp = (pg — pp)?, the calculation of the QED
radiative corrections to the double-differential decay rate
dI'/ds pds, might be feasible!

05 055 06 065 07 075 08 085 09 095



backup material




quenching the zero modes, induced systematics at O («)

® at O(a) the systematics associated with the quenching of the zero modes can be understood,
for example

1 qx0 1 1-6
=[5 L HE ) Lua () i
2n L3 k2 o
a0 ) = [ate T 01t (2) 3% )1 P () | -
1

O T T ——
¢ W be+ B tmg



quenching the zero modes, induced systematics at O («)

® at O(a) the systematics associated with the quenching of the zero modes can be understood,
for example

1 gx0 1 1-6
k,0
=/ B0 ) Lya () i
2r L3 5 k2 ?
a0 ) = [ate T 01t (2) 3% )1 P () | “am
1

O T T ——
¢ W be+ B tmg

® the ultraviolet behaviour of this object is given by

Or(0) 1 1ax® 1 1—-6p.0

" o o
J x) jyy (0) ~ , H k) ~ — ~
em (2w (0) 23 *)~ 2w L3 K4



quenching the zero modes, induced systematics at O («)

® at O(a) the systematics associated with the quenching of the zero modes can be understood,
for example

1 gr0 1 1-6
=[5 L HE ) Lua () i
2n L3 k2 ?
4 i . .
a0 ) = [ate T 01t (2) 3% )1 P () | -
1

LFY (k) = 0y ,y® —————————— ¥
YT ke )+ my

® the ultraviolet behaviour of this object is given by

Or(0) 1 N/% dkO 1 1—-6p.0

" o pa g,
J z) jyy (0) ~ s H k) ~ s
em (%) 3y (0) o3 () ~ 2n L3 5 k4

® in the local theory the diagram has a logarithmic divergence (absent with a propagating W) that renormalizes G f; the
effect of the zero-modes subtraction is a term

1 orLoak a®

3 ®0)2 T 13

no new ultraviolet divergences but tricky interplay between cutoff and finite volume effects!



finite volume effects

SR

o

0.015

RM123+SOTON, PRL 120 (2018), PRD 100 (2019)
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some more details

® |et's look a bit more in details to the master formula

_ 2 . pt pt 2 . SD 2 . \SD
I(E) =T +e ml;rgo{rv(mw)-mR(mw,E)}-re i TR (my, E) + € lim 157 (L)

Real SD Virtual SD




the point-like effective theory

RM123+SOTON, PRD 91 (2015), PRD 95 (2017), arXiv:1612.00199

® infrared divergences can be computed in the so called point-like effective theory

Lpe = oh, {7Di + mf,} ép + fp {2iGFVcKM Dyt vt u + h.c.} . Dy =0, —icA,

® properly matched effective field theories have, by definition, the same infrared behaviour of the fundamental theory:
at leading order the matching is obtained by using I'g

G2 |V, 1252 2 m

F CKM P 3.2 2 14

=87mprz (1—7“() s rg = —— , Dy, +— 9y
us mp

t
et =1y



the point-like effective theory

RM123+SOTON, PRD 91 (2015), PRD 95 (2017), arXiv:1612.00199

infrared divergences can be computed in the so called point-like effective theory

2 2 . I .
Lpe = oh, {7D“ + mP} ép + fp {QZGFVCKZM Dyt vt u + h.c.} . Dy =0, —icA,
properly matched effective field theories have, by definition, the same infrared behaviour of the fundamental theory:
at leading order the matching is obtained by using I'g
G2 |V, 1252 2 m
t CKM P 3.2 2 14
Fg =F0=F87mprz(l—7‘() s Ty = — Dy, +— 9y
us mp
® structure-dependent terms can also be understood in the effective field theory language, e.g.
L Ey
Fup=00Ap —0pAL, subleading in  ——
My

Oy (z) = Fy "’ Duép Fuplyov,

by exploiting the full set of constraints coming from the Wls and from the e.o.m one can rigorously show that in the
expansion around vanishing photon energies both the leading (infrared divergent) and the next-to-leading terms are

universal: this implies that O(L ~ 1) finite volume effects are universal (see next slide and backup)



the steps of the calculation

2

_ 2 . pt pt . SD 2 . SD
T'(E)=T¢g +e ml;rgo {FV (m~) + TR (my, E)} +e ml;lgo 'y (m~,E) +e nguoo ry (L)

® concerning the point-like calculation in infinite volume, we have generalized the results obtained in the early days of
quantum field theory by berman 58, kinoshita 59
RM123+SOTON, PRD 91 (2015)



the steps of the calculation

2

_ 2 . pt pt . SD 2 . SD
T'(E)=T¢g +e ml;rgo {FV (m~) + TR (my, E)} +e ml;lgo 'y (m~,E) +e ngléo ry (L)

® concerning the point-like calculation in infinite volume, we have generalized the results obtained in the early days of
quantum field theory by berman 58, kinoshita 59
RM123+SOTON, PRD 91 (2015)

® concerning the real SD contribution, we have used xpt results, v.cirigliano and i.rosell, PRL 99 (2007), to show (see backup
for non-perturbative results!)

(E) - T .
r3P(e) < vo02¥ , E = E™%% | P={m,K}, L=upu
€



the steps of the calculation

2

_ 2 . pt pt . SD 2 . SD
T'(E)=T¢g +e ml;rgo {FV (m~) + TR (my, E)} +e ‘nLl—lyIE}O 'y (m~,E) +e Lliléo ry (L)

® concerning the point-like calculation in infinite volume, we have generalized the results obtained in the early days of
quantum field theory by berman 58, kinoshita 59
RM123+SOTON, PRD 91 (2015)

® concerning the real SD contribution, we have used xpt results, v.cirigliano and i.rosell, PRL 99 (2007), to show (see backup
for non-perturbative results!)

(E) - T )
r3P(e) < vo02¥ , E = E™%% | P={m,K}, L=upu
€

® concerning the point-like finite volume contribution we have calculated the universal infrared logs but also the O(Lil)
terms: F‘C,D(L) has O (L~?2) finite volume effects!
RM123+SOTON, PRD 95 (2017), arXiv:1612.00199

1Z/d3k dk® 1 O(l)
L3 4 (2m)3 21 kP Li-5



non-perturbative calculation of Fé;D (L)

RM123+SOTON, PRL 120 (2018), PRD 100 (2019)

0.012
0.009 - 4
. I
. . - et ——
o o o = fec g
d v v d v * gﬂ ®
@ ) © 2] M_~ 310 Mev
0.003 [o D30.48 b
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® we have performed the lattice calculation by using the RM123 method, i.e. by expanding the lattice path-integral with
respect to o and the up-down quark mass difference

by using this method we managed to obtain excellent numerical signals for the correlators corresponding to the
diagrams shown in the figure and for the associated counter-terms

we have computed non—perturbatively the required renormalization constants in the RI’-MOM scheme and matched

them perturbatively with the so-called W-scheme (a NPB 196 (1982); e.braaten and c.s.li PRD 42 (1990)) in which G g
is defined
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we have performed the lattice calculation by using the RM123 method, i.e. by expanding the lattice path-integral with
respect to o and the up-down quark mass difference

by using this method we managed to obtain excellent numerical signals for the correlators corresponding to the
diagrams shown in the figure and for the associated counter-terms

we have computed non—perturbatively the required renormalization constants in the RI’-MOM scheme and matched
them perturbatively with the so-called W-scheme (a NPB 196 (1982); e.braaten and c.s.li PRD 42 (1990)) in which G g
is defined

we have not computed the contributions corresponding to charged sea-quarks; this is the so called electroquenched
approximation: although we have estimated the associated uncertainty by using xpt, there is certainly room for
improvement here. . .



QED on a finite volume: the problem

® it is impossible to have a net electric charge in a periodic box @
® this is a consequence of gauss’s law @
1 _
_ 4 f
s_/LSd x{ZFW,FMU-i»wf (V#Du+mf)¢f} @
Oy Fop(x) — ieqpidpyop(z) =0 @
N —r N—— o ———
By (z) ep(x) @

- 3 _ 1 3 -
Qf/LSdzp(z)f;/LsdzakEk(z)70 @

® one may think to overcome this problem by gauge fixing but large gauge transformations survive a local gauge fixing
procedure (n € Z*)

i Tpmp
w(@) e I L gy Au@) o Aute) + 0

i

i Tpump N _
B@) FO) T F T (@) B0) W@ BO) =0, =#0



quenching the zero modes

® in order to study charged particles in a periodic box it has been suggested long
ago (duncan et al. 96) to quench (a set of) the zero momentum modes of the
gauge field, for example

o) = DyYDPp DA s/ A (x)le S0
(o) /pbcinspace vPy Ml;[ {/TL3 ,(r)}e

® by using this procedure one is also quenching large gauge transformations that are
no longer a symmetry and charged particles can propagate

® the assumption is that the induced modifications on the infrared dynamics of the
theory should disappear once the infinite volume limit is taken

® the point to note is that the resulting finite volume theory, although it may admit an hamiltonian description, is non-local
m.hayakawa, s.uno Prog.Theor.Phys. 120 (2008)

BMW, Science 347 (2015), Phys.Lett. B755 (2016)

z.davoudi, m.j.savage PRD90 (2014)

E _ 4
QEDy, : Hé{/’3 ddzA,‘(t,z)} N /b _ Dayy(t) Sp3 dteau(t) Ay(te)
hit JL pbc in space



by quenching the zero modes. ..

RM123, Phys.Rev. D87 (2013)

® QED+QCD isospin breaking effects can be calculated by
expanding the lattice path-integral w.r.t. e“ and

mg — Moy

M+ — Mpo = 20,

2 ) <>

® the numerical issue here are quark-disconnected diagrams

BMW, Science 347 (2015), PRL 117 (2016)

® one can also perform simulations of QED+QCD at all
orders in e and eventually fit leading isospin breaking
effects

® the numerical issue here is that the very small isospin
breaking effects come together with the big isosymmetric
QCD contributions
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gauge-invariant local theory on the finite volume

b.lucini, a.patella, a.ramos, n.t, JHEP 1602(2016)

® consider C* boundary conditions (first suggested by wise and polley 91)

Vy(x+ Lk) = C™'9F (x)

Py(z+ Lk) = —¢] (2)C

Ap(z + Lk) = —Ap(z) , Upu(z + Lk) = U;(z) >

® the gauge field is anti-periodic (|p| > 7/L): no zero modes by construction!

® this means no large gauge transformations and

[ 3 _ 1 3
Q—/L3d @p(z) = e/de @ 0, By, (2) # 0

® a fully gauge invariant formulation is possible: technically this is a consequence of the fact that the electrostatic
potential is unique with anti-periodic boundary conditions

0,0, 0(x) = 6°(x), ®(x+ Lk) = —d(x)



gauge—invariant charged states

® electrically charged states can be probed by considering (Dirac's factor)

PP 3., & o A
Vp(ta)=¢ T TVEWTROAREY) i (a), popB(a) = 5% (x)
o(t,x)

® these interpolating operators are invariant under U(1) local gauge transformations
Yp(@) = U gi@y, Au(e) = Au(e) + Opale)
ot, z) — oiag S d3y & (y—z)0y, 0 a(t,y) ot @) = o —iapo(t,@) o, )

® the gauge factor is not unique, for example one can consider

Tp(t@) = e iqp [Zoo dy A (t,y,zg,x3) Yyt ),

® for any consistent gauge-fixing condition one can build the Dirac factor that provides the unique gauge-invariant
extension of matter fields in that gauge

® notice though: interpolating operators can be non—local in space but must be localized in time!



QCD+QEDc works!!

® besides being an attractive theoretical possibility, we have
recently shown that QED ¢ can be profitably used in
numerical applications

® hadron masses can be computed in a fully gauge invariant
and local setup with good numerical accuracy

® the RC* collaboration has developed an open-source
code, openQ*D, that allows to perform full-simulations of
QED+QCD with a wide variety of temporal and spatial
boundary conditions

https:/ /gitlab.com/rcstar/openQxD
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QED on a finite volume: many different approaches

® QED: at any fixed order in « radiative corrections
can be represented as the convolution of hadronic
® QEDy,: very attractive for its formal simplicity; correlators with QED kernels, e.g.

ﬁi’:’;‘glzfesoc(;) ;:z:ﬁiffs’::;'dcs associated with xfeng et al PRD 100 (2019), LATTICE19

ow = [, d=nfcp@ D)

® QED,, 3 formally, the simples‘t way.to solve the — /d4z Hoop (2) Dy ()
problem in a local framework is to give a mass to the
photon; the L +— oo limit must be taken before
restoring gauge invariance (m'y — 0) the subtle issue here is the parametrization of the
m.endres et al. PRL 117 (2016) long-distance tails of the hadronic part;

in fact the proposal is an extension of the spectacular
applications of the convolution approach to the g,, — 2,

® QED( a local and fully gauge invariant solution,
formally a bit cumbersome, flavour symmetries reduced
to discrete subgroups (no spurious operator mixings
though) and fully recovered in the infinite volume limit

LN et al. arXiv:1911.05573
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® which is the best approach?
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® QED: at any fixed order in « radiative corrections
can be represented as the convolution of hadronic
® QEDy,: very attractive for its formal simplicity; correlators with QED kernels, e.g.
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® QED,, 3 formally, the simples‘t way.to solve the — /d4z Hoop (2) Dy ()
problem in a local framework is to give a mass to the
photon; the L +— oo limit must be taken before
restoring gauge invariance (m'y — 0) the subtle issue here is the parametrization of the
m.endres et al. PRL 117 (2016) long-distance tails of the hadronic part;

in fact the proposal is an extension of the spectacular
applications of the convolution approach to the g,, — 2,

® QED( a local and fully gauge invariant solution,
formally a bit cumbersome, flavour symmetries reduced
to discrete subgroups (no spurious operator mixings
though) and fully recovered in the infinite volume limit

LN et al. arXiv:1911.05573

® which is the best approach?

® in my opinion this is not the relevant point: what really matters is that one must be able to estimate reliably the
systematic uncertainties associated with the chosen approach!



Dirac’s factor in QCD+QED

® in the compact formulation the path-integral is well
defined without gauge fixing

A
[ ]
Y

® by choosing an unconventional normalization for the
U(1) gauge field (action),

2
9% @, pv ,pv fox

S= 5 X u{1- V@)t 55 3 (1= V@) + X 6@ D0 Vv @)

6qs _ Bay o i
VulU" VI (@) = Uy (@) V@) by (@ +p) —¢p(@) . Un(@) =14 cAu@) +--

® Dirac’s interpolating operators can then be implemented as analytical functions of the link variables, e.g.

—1 o, L—:rk_—l _
Vi) = [[ U7 @t+skvi@ [ Up (@ sk)

s=—ay, 5=0

® the mass of, say, the charged kaon can be extracted from the fully gauge invariant correlator

Z ey (L) e Mpt (Dt [efA(L)t]

> (SvsU(t, =) Uvs5(0)) = m

@



power-law finite volume effects

® power-law finite volume effects arise when internal states can go
on-shell, e.g.

2 + 6
L

AO(p, L) = O(p, L) — O(p, o0)

1 A3k - dk0
- E%f/(zww /TfO(p’k)

K



power-law finite volume effects

® power-law finite volume effects arise when internal states can go
on-shell, e.g.

2tn + 6
k:wi, a >0,

AO(p, L) = O(p, L) — O(p, >0)

dk O
- (Ls - /(2ﬂ)3>/ fo (. k)
_ go(p) + O(k)
B <L3 2" /(2w>3>{ (k- p)* }




power-law finite volume effects

® power-law finite volume effects arise when internal states can go
on-shell, e.g.

2ntn + 6
= —), a >0,
L
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dk®

- L3Z /(27r)3 /;fO(p’k)
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power-law finite volume effects

® power-law finite volume effects arise when internal states can go
on-shell, e.g.

2 + 6
= —, a >0,
L

AO(p, L) = O(p, L) — O(p, o0)

dk°
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universality of infrared divergences

LR

~ 1
2p-k+k2

® the key point of our method is the universality of infrared divergences

® to see how this works, let's consider the contribution to the decay rate coming from the diagrams shown in the figure

d*k 1 Lau(k)
Fge = 1 H (k, p) T2 LQ
(27) k2 2py -k +k

® infrared divergences (and power-law finite volume effects) come from the singularity at k2 = 0 of the integrand

® the tensor L, is a regular function, it contains the numerator of the lepton propagator and the appropriate

normalization factors

Eau(k) = ‘Cau(kxpyxpe) =0(1)



universality of infrared divergences

® the hadronic tensor is a QCD quantity

HO (k,p) =i /d% BT 0] IG (0) §# () | P)

® it satisfies the WIs coming from QED gauge invariance, e.g.

ky H*"(k,p) = —fp p™ ,

® and, given the kinematics of the process, it is singular only at the
single-meson pole



universality of infrared divergences

the hadronic tensor is a QCD quantity
HOM(k,p) =i /d4z BT 0] IG (0) §# () | P)

it satisfies the Wls coming from QED gauge invariance, e.g.

ky H*"(k,p) = —fp p™ ,

and, given the kinematics of the process, it is singular only at the
single-meson pole

the singularity can be isolated by considering the point-like tensor, built in such a way to satisfy the same WiIs of the full
theory

(p+ k)™ (2p + k)" }

HMM (k,p) = f S —
ot (k,p) =fp 2 h 12

Hgp(k,p) = H* (k,p) — Hpl'(k,p) ,  ku Hpf'(k,p) = —fpp®,  kuHgh(k,p) =0



universality of infrared divergences

® the hadronic tensor is a QCD quantity
HOM(k,p) =i /d% BT 0] IG (0) §# () | P)

® it satisfies the WIs coming from QED gauge invariance, e.g.

ky H*"(k,p) = —fp p™ ,

® and, given the kinematics of the process, it is singular only at the
single-meson pole

® the singularity can be isolated by considering the point-like tensor, built in such a way to satisfy the same WiIs of the full
theory

(p+ k) (2p + k)M
2p - k 4 k2 ’

HOM (b, p) = fp {o‘ -
Hgp(k,p) = H* (k,p) — Hpl'(k,p) ,  ku Hpf'(k,p) = —fpp®,  kuHgh(k,p) =0

® the structure dependent contributions are regular and, since there is no constant two-index tensor orthogonal to k,

HZ(k,p) = (p- k8™ —k“p!) Fa + " ppko Fy + -+ = O(k)



universality of leading finite volume effects

® at O(ez) with massive charged particles, singularities arise only at

k2 = (+ilk)2 + k%2 =0
® the blobs on the right are QCD vertexes, e.g.

A(p + k)T (p, k)A(p) =

i) [ dteatye™ R0 P () " )P O)0) |

Aw) = N) [ a'ye PVl PW) PTO)0) |

N7 (p) = (P(®)|PT(0)|0)]?,

® gauge WIs constrain the first two terms in the expansion, e.g.

kuTH(p, k) = A" (p+ k) — A7 (p) ,

I (p, k) = 2p* + kM + O(k?)

(a)

>

(b) (e)




universality of leading finite volume effects

® at O(ez) with massive charged particles, singularities arise only at

k2 = (Lilk])2 + k2 =0 ’ 3<

® the blobs on the right are QCD vertexes, e.g.

A+ T (p, A M) = o1 _8_@<
(e)

®)

= —<

Aw) = N) [ a'ye VTP PTO)0) | w “

N7 p) = [(P(@) [ PT(0)]0)? 4%<
(53] (9)

® gauge WIs constrain the first two terms in the expansion, e.g.

i) [ dteatye™ PRIl PW)I* @) P O)0) |

the first two terms in 1/ L are universall!

frv =g} @ =P +0 ()

kuTH(p, k) = A7 o+ k) — AT N(p)

T*(p, k) = 2p" + k" + O(k?)



what is QCD?

in order to compare results for QED radiative corrections
we must first agree on what we call QCD. ..

indeed, when electromagnetic interactions are taken into
account the physical theory is QCD+QED

the QCD action is no longer expected to reproduce
physics and, consequently, its renormalization becomes
prescription dependent

a natural matching prescription is to use again physical
experimental inputs to set the QCD parameters

another prescription (j.gasser, a.rusetsky and i.scimemi, EPJ
€32 (2003)) consists in imposing the condition that the
renormalized couplings of the full theory and QCD are
the same, say in the M S scheme at pu = 2 GeV

in RM123+SOTON, PRL 120 (2018), PRD 100 (2019) we have
compared the two approaches and found that the
difference, nowadays, is smaller than the statistical
uncertainties

this will rapidly became an important issue on which we
should find an agreement

Experimental
Inputs

Prescription

QCD+QED

(e:g:m)

Qcp

(0,g0,m0)

Physical Decay Rate

Radiative
Corrections.

Leading Order
Decay Rate




euclidean correlators vs analytical continuation

it is always a good idea to address the issue of analytical

continuation by starting from correlators, it is usually

more cumbersome to locate singularities in the

amplitudes in minkowsky time:

the reason is that correlators (Schwinger's functions) C(t) = T(0| --- O(t) O(0)]0)
can always be Wick rotated without any problem . .
e~ it(H —ie) 0|0) + o.t.o.

= (0] ---
euclidean reduction formulae work straightforwardly
only for the lightest states, i.e. the leading exponentials _ 0 o ipOt
appearing in the correlators, because the corresponding A(E) =2E(p E) 0 dte C(t) +oto.
integrals are convergent

problems arise when one is interested in processes
corresponding to non-leading exponentials (notice that in euclidean time:
at finite L the spectrum of H is discrete)

Cr(r) =] - e "7 0J0) +oto.
the first step in a lattice calculation of a new observable
is to understand if the leading exponentials correspond
. oo 0
to the external states for the process of interest A(E) = 72iE(p0 —B) / dr P’ Cp(r) + oto.
0

the lightest state appearing in a correlator is readily
found by using the quantum numbers of the theory (in
p.t. by using the quantum numbers of the full theory)



QED radiative corrections from euclidean correlators

from the spectral decomposition of correlators at O () one

gets expressions that are rather involved but their structure is

easy to understand and somehow illuminating

Ct) = e tF®) /(jﬂ; AT (q)

d3q
(2m)3

Area1<q> e tHEMP—a)+Ey(q)]

when the spatial momentum g of the photon goes to zero we
have

lg| — 0
E(p —q) + Ey(q) — E(p)

lal

A'uﬁ*t (q) — C'u'i'rt —cIn log il

real la|

Areal +crg log —
m

(q) = c

for each charged particle emitting a photon one has the
exponential corresponding to the charged particle itself
as an external state (the virtual photon contribution)

but also the exponential corresponding to the external
states with the photon on-shell (the real photon
contribution)

since

lgl ++/ M2+ |p — q|? /M2 + |p|?

with an infrared regulator the blue exponentials are
sub-leading and, if one is interested in the virtual
contribution, there is no problem of analytical
continuation



QED radiative corrections from euclidean correlators

in the case of the 0(52) QED radiative corrections to the leptonic decays of pseudoscalar mesons

since as we have seen

at fixed total momentum and with an infrared regulator the
la| + \/M2 +|p—-ql2 > \/M2 + Ip|? pseudoscalar meson is the lightest state in QED+QCD with
the given quantum numbers

here there is a problem of analytical continuation! but this therefore, no problems of analytical continuation arise in
diagram can be factorized and the leptonic part can be the self-energy diagrams and in the diagram in which the
computed analytically real photon is emitted from the meson!

notice that this is true for a pion but also in the case of
flavoured pseudoscalar mesons such as K, B, D!



QED radiative corrections from euclidean correlators

® problems of analytical continuation do arise in the case of
semileptonic decays because of electromagnetic final state
interactions

® the internal meson-lepton pair, and eventually
multi-hadrons-lepton internal states, can be lighter than the
external meson-lepton state

® this is a big issue, particularly in the case of B decays because
of the presence of many kinematically-allowed multi-hadron
states




QED radiative corrections from euclidean correlators

problems of analytical continuation do arise in the case of
semileptonic decays because of electromagnetic final state
interactions

the internal meson-lepton pair, and eventually B
multi-hadrons-lepton internal states, can be lighter than the
external meson-lepton state

this is a big issue, particularly in the case of B decays because
of the presence of many kinematically-allowed multi-hadron
states

the problem does not arise at the point (on the boundary of the
allowed phase-space)

0.9
2 2 2
sv =(pB —Pv)” = (Pp +pe)” = (mp + my) 08
0.7
in this particular kinematical configuration, by calling ; 06 I
sp = (pg — pp)?, the calculation of the QED radiative
corrections to the double-differential decay rate dI'/dspds, 05
might be feasible!
04 b,

05 055 06 065 07 075 08 085 09 095



form-factors for real decays

® the starting point is the hadronic tensor (p2 = m?;)

HM (k, p) = /d“ye““'yT<oua‘v<0)jg‘m<y)|1><p)>

® this can be conveniently decomposed in terms of form-factors as follows

HM (k, p) =HES (k, p) + HES (k, p)

HER (k,p) =Hy [K2g"™ — kMK ] + Ha [(p- b — KK — &% (0 = B)*] (0 = )™

. Fy Fa
— it T pg + = [(p k= K2)gH — (p — k)R]
mp mp

H”a(k,p) —fp |: pe 4 (2p — k) (p — k)a:|

2p - k — k2
® the choice of the basis is of course not unique and, moreover, the separation of the point-like contribution can also

depend upon the conventions: our definition of Hg'ta (k, p) is consistent with the point-like effective lagrangian and it is

what we used to compute Flg(E); notice that

kuH(k,p) = fpp® . kuHE (k,p) = fpp™,  kuHED(k,p) =0

i.e. H“ (k, p) satisfies the same ward identity of the full-theory tensor



form-factors for real decays

® in the case of real photons, k2 =0, the previous expressions simplify as follows

HY(k,p) =H§T (k, p) + Hp* (k, p)

HEY (k,p) =k" {—H1 k™ + Hap - k(p — k)" }

. Fy Fa
— it B py + 2 [p - kg"Y — (p — k)E?]
mp mp

(2p — k) (p — k)*

HP (k, p) = ne
pt (K, p) =fp |9 2k

® the form factors Hj 2 do not enter into the physical decay rate for P — £y and can be conveniently separated by
considering the projector onto the transverse (and therefore physical) degrees of freedom of the photon that is attached
to the vector current

[E* —n - knt] [kY —n - kn"]

n = (1,0), PHY (k,n) = —gl" +ntn? +
(1,0) (k,n) = —g T —s




form-factors for real decays

® the projector P*¥ (k, n) is such that

P (k,n)ky = P* (k,n)ny, =0, PPP(k,n)PY (k,n) = P (k,n) ,
v _ prn 00 _ p0i _
PHY(k,n) = PYH(k,n) , Pk, n) = P%(k,n) =0,
kikI

ij — st _
PY(k,n)=196 w2

® in fact P*Y (k, n) is nothing but the numerator of the photon propagator in the Coulomb’s gauge that forbids the
propagation of unphysical degrees of freedom; we have

B Fy
Pyy(k,n) HES (k, p) =Py (k, n) {ﬂ—ve'mﬂkvpﬁ A p kgt — (p— k)"’k”}}
mp mp

® by introducing the polarization vectors as follows (that depend upon n and k)

e =n=(1,0), e1,2 = (0,€1,2), ez = (0, k/|k]) ,



form-factors for real decays

® the projector P*¥ (k, n) can be rewritten in terms of the transverse polarization vectors €1,2 as follows

eﬁei:P“V(k,n), eT,MP“u(k,n)z—er_, r=1,2
r=1,2

® explicit expressions for the transverse polarization vectors are given below

—ki1ks —koks \% k%+k§

eff (k) =
1 ; . , ,
lkl\/k? + k3 |k|\/kT + k3 K|
k k
Gk) = |0, = — e 0
VEZ + k2 k2 + k2



form-factors for real decays

in light of the previous discussion, one can either use the (formally) covariant expressions given above for P*¥ (k, n) or
the explicit expressions for the transverse polarizations €1 o in order to isolate the physical contributions appearing into
H"(k, p)

in particular, since the axial and vector part of the weak current can be computed separately, we have

p-ke¥ —er-pk® mp fp fp
er HYO (kyp) = ———"—— {FA t— +p%er-p
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mp

. Fy
er,u HY (k,p) = lmifmmﬁér,uk'ypﬁ s
P

r=1,2



infrared-safe measurable observables

L]

the infrared problem has been analyzed by many
authors over the years

electrically-charged asymptotic states are not
eigenstates of the photon-number operator

the perturbative expansion of decay-rates and
cross-sections with respect to a is cumbersome
because of the infinitely many degenerate states

the block & nordsieck approach consists in lifting
the degeneracies by introducing an infrared
regulator, say m.~, and in computing infrared-safe
observables

at any fixed order in «, infrared-safe observables
are obtained by adding the appropriate number of
photons in the final states and by integrating over
their energy in a finite range, say [0, E]

in this framework, infrared divergences appear at
intermediate stages of the calculations and cancel
in the sum of the so-called virtual and real
contributions

f.bloch, a.nordsieck, Phys.Rev. 52 (1937)
t.d.lee, m.nauenberg, Phys.Rev. 133 (1964)
p.p-kulish, I.d.faddeev, Theor.Math.Phys. 4 (1970)
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the point-like result: TPt (E)

RM123+SOTON, PRD 91 (2015)

concerning the perturbative point-like calculation in infinite volume, we have generalized the results obtained in the early
days of quantum field theory by berman 58, kinoshita 59

pt 2 . t t
rPY(E) =e i {1‘{’/ (my) + T2 (my, E)}

2 2

e m 2 — 107

=Tg —cm 3 log TP + log(r?) — 4log(r2E) + 722 log(v‘?)
4am miy 1—ry

1

2 2
log(rg) log(ry) — 4
- L—ry

1412 +75 2
—21 5 T‘2L|2(1—r£)—3

3+r2E76'r?+47'E(71+r3) TE(47TE747”3)

log(1 — rp) + log(r)

(1—r2)2 (1—r2)2
rgp(—22 + 3rg + 28r7) 1472
- 5 -4 5 Li2(rg) ¢
2(177‘2)2 1—rf
where
2E my

TE = ) e



non-perturbative renormalization

® notice that I'y/ (L) and FT\)}‘(L) are ultraviolet divergent in the Fermi theory

® the divergence can be reabsorbed into a renormalization of G i, both in the full theory and in the point-like effective
theory

® we have analyzed the renormalization of the four-fermion weak operator on the lattice in details and calculated
non-perturbatively the renormalization constants in the RI-MOM scheme

® we have then matched the non-perturbative results to the so-called W-regularization at O () (a.sirlin, NPB 196 (1982);
e.braaten and c.s.li PRD 42 (1990))

1 1 1 GrVekm o mz W-re
— Y — - ———, Hy = ——"""2<14+ —log—= 0 g,
2 k2 K24 my, w vz B

5
W-re; latt
0, "8 =3~ 21,0/ (a)
i=1
® indeed, this is the scheme conventionally used to extract G i from the muon decay
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the structure dependent real contribution: F%D(E)

RM123+SOTON, PRD 91 (2015)
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® concerning the real structure dependent contributions, the relevant hadronic quantity is

o HO ) = eu(®) [ dte e Tl @) 5% O)1P) k=0

that can be expressed in terms of (two if € - k = 0) hadronic form—factors (see below)

® by using the xpt results (v.cirigliano and i.rosell, PRL 99 (2007)) for these quantities, we have estimated the structure
dependent real contribution to be, nowadays, phenomenologically irrelevant for P = {7, K} and £ = p

I'(E) — Ty
SD . t
PRY(B) = lim {rr(my, B) = T (my, B)} < 0.002———2



the structure dependent real contribution: F%D(E)

RM123+SOTON, PRD 91 (2015)
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® concerning the real structure dependent contributions, the relevant hadronic quantity is

o HO ) = eu(®) [ dte e Tl (@) 55 O)1P) k=0
that can be expressed in terms of (two if € - k = 0) hadronic form—factors (see below)
® in the last part of the talk | will show the preliminary results of a fully non-perturbative calculation of the structure

dependent real contribution: these confirm the phenomenological analysis for P = {7, K} and open the possibility of
calculating D(5> +— Lo~y and B — LD~y



analytical calculation of F[C,t (L)

® we performed an analytical calculation of l—‘e,t(ll) RM123+SOTON, PRD 95 (2017), arXiv:1612.00199

FP.’(L) — F({(L) c 1

A% Vv 2 2 1
— =c log(L"“m + + —F 40 <—>
To CIR g( p) co ( L) L2

where

CIR =

;{(uﬁnog(r?) +1} 7

82 (lf'rg)

1 m3 (2 — 6r7)log(r7) + (1 + r7)log?(rf) 5 ¢c(0) — 2¢c(By)
0= g y2les | o |+ -,

2
myy, 1—7’Z 2 2

2(1 4 r2)
e = 17%3(0) peae LG
and we have shown that ¢y, co and cy are universal, i.e. they are the same in the point-like and in the full theories!
this means that in F‘aD (L) =Ty (L) — 1"{’,1 (L) we subtract exactly, together with the infrared divergence, the

leading O(1/L) terms and we have O(1/L?) finite size effects

® notice: the lepton wave-function contribution, F{}(L), does not
contribute to I‘aD (L) X



simulations

ensemble| B | V/a' |Nug||aptsea = aptua| apo | aps | aps || Mz (MeV)| My (MeV)| ML

the numerical results presented in this 440.40 [1.90]40° x 80| 100||  0.0040 | 0.15 | 0.19 |0.02363|| 317 (12) | 576 (22) | 5.7
talk have been obtained by using the 430,32 323 % 64] 150 0.0030 275 (10) | 568 (22) | 3.9
gauge configurations generated and made
publicly available by the ETM A40.32 00| 0.0040 316 (12) | 578 (22) | 4.5
collaboration A50.32 150|  0.0050 350 (13) | 586 (22) | 5.0
A40.24 24% x 48150 || 0.0040 322 (13) | 582 (23)
. . - A60.24 150 |  0.0060 386 (15) | 599 (23)
after the inclusion of QED radiative As0.24 150 00080 W | o1s (14
corrections with the RM123 method, i 2 : 2 (17) | 618 (14)
these have ny = 1+ 1+ 1+1 A100.24 150|  0.0100 1495 (19) | 639 (24)
dynamical flavours A40.20 20% x 48[ 150 || 0.0040 330 (13) | 586 (23) | 3.0
B25.32 [1.95[32% x 64/ 150 | 0.0025 | 0.135 | 0.170 |0.02094|| 259 (9) | 546 (19) | 3.4
3 different lattice spacings with B35.32 150|  0.0035 302 (10) | 555 (19) | 4.0
> B55.32 150 0.0055 375 (13) | 578 (20) | 5.0
a 0.0619(18) fm
80| 0.0075 436 (15) | 599 (21) | 5.8
24% x 48150 || 0.0085 468 (16) | 613 (21) | 4.6
several sea quark masses and volumes
with my > 223(6) MeV and D15.48 [2.10|48% x 96/100 | 0.0015  [0.1200|0.1385(0.01612| 223 (6) | 529 (14) | 3.4
mxL < 5.8 D20.48 00| 0.0020 256 (7) | 535 (14) | 3
)

D30.48 100 0.0030 312 (8) | 550 (14




