Heavy Flavour Physics Workshop Sapienza, Università di Roma, 17 Feb 2020

Semileptonic Decays: recent results and opportunities

Marcello Rotondo

Laboratori Nazionali di Frascati

Semileptonic decays

Nucleon β-decays

Hyperon semileptonic decays

Λ

p udu udu w⁻ v_{w^-} (modern language) W-boson exchange $\frac{G_F}{\sqrt{2}} = \frac{g^2}{8m_W^2}$

p udu w⁻ v⁻ v⁻ v⁻ v⁻ v⁻ Quark mixing: Cabibbo 1961

Semileptonic decays

Semileptonic decays are clean channels from theoretical point of view:

$$\mathcal{M}(B \to \pi \ell^- \overline{\nu}) = -i \frac{G_F}{\sqrt{2}} \cdot V_{ub} \cdot L^\mu H_\mu$$

• Factorization of the hadronic and leptonic current: no final state interactions

Why semileptonic B decays ?

... at least three reasons:

 $\frac{\Gamma(B \to D^{(*)} \tau \nu_{\tau})}{\Gamma(B \to D^{(*)} \ell \nu_{\ell})}$

|V_{xb}| provide crucial inputs for indirect search of New Physics $|V_{ub}|$ and $|V_{cb}|$ discrepancies between different determinations: 3σ effect Difference with expectations @ about 3\sigma

UT Status (Summer 2018)

• Prediction of FCNC processes $\propto |V_{tb}V_{ts}|^2 \approx |V_{cb}|^2 [1 + O(\lambda^2)]$

Experiments: B-Factories

B-Factories: hermetic detectors, low background, access (mainly) at B^{0/+}

About $(771 + 467)x10^6$ e⁺e⁻ \rightarrow BB events in the Belle+BaBar data

M.Rotondo

Roma 2020

B-hadron production

$\mathcal{N} \propto \mathcal{L} \cdot \sigma$

• B-Factories: e⁺e⁻ running at √s~ 10.58 GeV

 $\sigma(e^+e^- \rightarrow \Upsilon(4S)) = 1.06 \text{ nb}$

 $BF(\Upsilon(4S) \to B\overline{B}) \approx 100\%$

BaBar: 430 fb⁻¹ Belle: 640 fb⁻¹ Belle-II expected 50 ab⁻¹

Hadron machines: high energy pp (or pp) collision

b-hadrons $\int \sigma(pp \to b\overline{b})_{7\ TeV} \approx 295 \cdot 10^3 \text{nb}$ $\sigma(pp \to b\overline{b})_{13\ TeV} \approx 600 \cdot 10^3 \text{nb}$

The b-quarks can hadronize in any kind of b-hadron B_d , B_u , Λ_b , B_s , Ξ_b , Σ_b , Ω_b , B_c ...

LHCb: 3 fb⁻¹ + 6 fb⁻¹

IV_{ub}I

Measurements of |V_{ub}|

- Need to know QCD corrections to parton level decay rate
- Operator Product Expansion predicts the total rate $\Gamma_{\rm u}$
- Exclusive decays $B \rightarrow \pi \ell \nu / \rho \ell \nu$
 - QCD effects are embedded in the form factors

$$\frac{\mathrm{d}\mathcal{B}(B \to \pi \ell \nu)}{\mathrm{d}q^2} = |V_{ub}|^2 \frac{G_F^2 \tau_B}{24\pi^3} p_\pi^3 |f_+^{B\pi}(q^2)|^2$$

Leptons are considered massless: only one FF $B \rightarrow \pi$

The state of the art at the B-Factories

Semileptonic decays

Hyperon semileptonic decays

udu

Fermi 4-body interaction р u d u $G_F \approx 1.17 \times 10^{-5} GeV^{-2}$ (modern language) W-boson exchange $=rac{g^2}{8m_W^2}$ G_F ∕∕S uda udd n

Roma 2020

Quark mixing: Cabibbo 1961

e⁺, μ⁺, τ⁺

Semileptonic decays are clean from theoretical point of view:

$$\mathcal{M}(B \to \pi \ell^- \overline{\nu}) = -i \frac{G_F}{\sqrt{2}} \cdot V_{ub} \cdot L^\mu H_\mu$$

Factorization of the hadronic and leptonic current: no final state interactions

Semileptonics at LHCb!

- At LHCb the key ingredients are:
 - Lepton identification
 - Trigger threshold to low-pT
 - Decay vertex separation from the primary vertex to identify the b-hadron decays: b-hadron flight length is ~1cm

$|V_{ub}|$ with $\Lambda_b \rightarrow p\mu\nu$ @ LHCb

Nature Phys.11(2015)743

- The b-baryon decays provided complementary information to B mesons
- Λ_b Produced copiously

- Kinematic constraints allow the determination of the p_{Ab} (modulo 2-fold ambiguity)
- Large background from $\Lambda_{_{b}} \rightarrow \Lambda_{_{c}} \mu v$
- LHCb determines (in the high q2 region) the ratio

$$R_{exp} = \frac{\mathcal{B}(\Lambda_b \to p\mu\nu)}{\mathcal{B}(\Lambda_b \to \Lambda_c \mu\nu)} - Signal$$
Normalization

Reconstruction of the q²

Hypothesis of just 1-neutrino missing, known masses of the particles, and the well-measured Ab flight direction gives the momentum with a 2-fold ambiguity

- Ciezarek et al. JHEP02(2017)021
 - The q² resolution can be improved exploiting other information as decay length and angle with respect to the beam line
 - Important when angular variables will be considered

M.Rotondo

Roma 2020

$\Lambda_b \rightarrow p\mu v$: Isolation criteria

Nature Phys.11(2015)743

- Require isolated proton-muon vertex
 - A multivariate classifier to distinguish between these two configurations
- Powerful tool to reduce background from other b-hadrons: 90% rejection & 80% efficiency
 - very difficult to isolate against neutral particles: main backgrounds

$\Lambda_b \rightarrow p\mu\nu$: corrected mass

 Use the corrected mass to discriminate signal from the remaining background

$$M_{corr}=\sqrt{p_{\perp}^2+M_{p\mu}^2}+p_{\perp}$$

Calculate uncertainty for each event and reject candidates with M_{corr} uncertainty greater than 100MeV only (~23% survive).

The signal peaks even with a missing particle!

16

$\Lambda_b \rightarrow p\mu v$: signal fits

$$R_{exp} = 0.92 \pm 0.04(stat) \pm 0.07(syst) \times 10^{-2}$$

Systematics dominated by $BF(\Lambda_c \rightarrow pK\pi)$, trigger and tracking efficiency

M.Rotondo

Roma 2020

Theory input

Detmold et al PRD92(2015)034503

First measurement of $\Lambda_b \rightarrow p \mu v$ First $|V_{\mu b}|$ in hadronic

environments

- Most recent calculation based on 2-1 L-QCD calculation using RBC & UKQCD configurations
- The most reliable theory predictions of the ratio of FF are obtained for:

•
$$\Lambda_b \rightarrow \Lambda_c \ \mu \nu \ q^2 > 7 \ GeV^2$$

•
$$\Lambda_b \rightarrow p \ \mu v \ q^2 > 15 \ GeV^2$$

IV_{cb}

Measurements of |V_{cb}|

- <u>Inclusive decays</u> $B \rightarrow X_c \ell \nu$:
 - HQE is the successful tool to include perturbative and non-perturbative QCD corrections
- Exclusive decays $B \rightarrow D\ell \nu / D^*\ell \nu$
 - QCD effects are embedded in the form factors

Roma 2020

Exclusive |V_{cb}|

• $B \rightarrow D\ell v$ and $B \rightarrow D^*\ell v$ provide clean way to extract $|V_{cb}|$

- B→D: for ℓ =e and ℓ =µ, only f₊(q²) plays a role B→D*: three form factors
- FF computed from Lattice-QCD
- Lattice-QCD reliable close to zero-recoil regime

[V_{cb}] and Form Factors parameterizations

- Phase space is reduced to 0 in the zero-recoil region
- Need an extrapolation to w=1 which has to rely on a form factor parameterization

• BGL Boyd, Grinstein, Lebed Phys.Rev.Lett 74, 4603 (1995)

$$f_i(z) = rac{1}{P_i(z)\phi_i(z)}\sum_{n=0}^N a_{i,n}z^n, \qquad z(w) = rac{\sqrt{w+1}-\sqrt{2}}{\sqrt{w+1}+\sqrt{2}}$$

Coefficient $a_{i,n}$ free parameters The unitarity and analyticity of the FF assure bounds on the sum of the $a_{i,n}^2$

n*.*0*.

• CLN Caprini, Lellouch, Neubert Nucl.Phys.B530, 153 (1998)

$$\mathcal{G}(z) = \mathcal{G}(1)(1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3)$$

 $B \rightarrow D \ell \nu$

Higher order coefficient connected with the slope ρ^2

$$egin{array}{rll} \begin{array}{lll} egin{array}{lll} egin{array}{llll} egin{array}{lll} egin{ar$$

$$R_2(w) = R_2(1) + 0.11(w-1) - 0.06(w-1)^2$$

M.Rotondo

G

B_s semileptonic decays

- Complementary measurements to those from B⁰ and B⁺
- Advantages:
 - Lattice calculations easier due to heavier spectator quark, so predictions are more precise
 - For the $B_s \rightarrow D_s^*$: the *zero-width* approximation of the D_s^* should work better than the B case (no $D\pi$ pollution)

HPQCD, PRD 99 (2019) 114512

Golden modes

B_s semileptonic decays

- Complementary measurements to those from B⁰ and B⁺
- Advantages:
 - Lattice calculations easier due to heavier spectator quark, so predictions are more precise
 - For the $B_s \rightarrow D_s^*$: the *zero-width* approximation of the D_s^* is more valid than the B case (no $D\pi$ pollution)
 - Experimental point: different background composition from excited D_s states than in the $B \rightarrow D^*$ case $D_s(2317) \rightarrow D_s\pi^0 > 90\%$

LHCb Measurement of |V_{cb}|

ArXiv:2001.03225

- Extract $|V_{cb}|$ from B_s decays B_s \rightarrow D_s $\mu\nu$ and B_s \rightarrow D_s* $\mu\nu$
- Normalized to $B^0 \rightarrow D^-\mu\nu$ and $B^0 \rightarrow D^{*-}\mu\nu$
 - The BF($B^0 \rightarrow D^{(*)}\mu\nu$) are known well from B-Factories

$$\mathcal{R} \equiv \frac{\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_\mu)}{\mathcal{B}(B^0 \to D^- \mu^+ \nu_\mu)},$$
$$\mathcal{R}^* \equiv \frac{\mathcal{B}(B_s^0 \to D_s^{*-} \mu^+ \nu_\mu)}{\mathcal{B}(B^0 \to D^{*-} \mu^+ \nu_\mu)}$$

- The D⁻ and the D_s are reconstructed in the same final state $D_{(s)} \rightarrow KK\pi$
- Decrease the systematic uncertainties: same particles and similar kinematic in the final state
- Only the D⁻ and the D_s are constructed
- The D_s and the D_s*(and D⁻ and D^{*-}) are separated kinematically (with m_{corr})

LHCb Measurement of |Vcb|

$$\mathcal{R} \equiv \frac{\mathcal{B}(B_s \to D_s \mu \nu)}{\mathcal{B}(B^0 \to D^- \mu \nu)} = \underbrace{\frac{N_s}{N_d} \cdot \frac{\epsilon_d}{\epsilon_s}}_{N_d} \underbrace{\frac{f_d}{f_s} \cdot \frac{\mathcal{B}(D^- \to KK\pi)}{\mathcal{B}(D_s \to KK\pi)}}_{\mathcal{B}(D_s \to KK\pi)}$$

External inputs fs/fd from PRD(2019) 031102 BFs from PDG

Signal yields and normalization yields from fit Efficiencies evaluated from simulation, adjusted for Data/MC differences based on control samples Analogous expression for R* (additional BF of the D*)

LHCb Measurement of |Vcb|

$$\mathcal{R} \equiv \frac{\mathcal{B}(B_s \to D_s \mu \nu)}{\mathcal{B}(B^0 \to D^- \mu \nu)}$$

$$\frac{\epsilon_d}{\epsilon_s} \left(\frac{f_d}{f_s} \cdot \frac{\mathcal{B}(D^- \to KK\pi)}{\mathcal{B}(D_s \to KK\pi)} \right)$$

External inputs fs/fd from PRD(2019) 031102 BFs from PDG

Signal yields and normalization yields from fit Efficiencies evaluated from simulation, adjusted for Data/MC differences based on control samples Analogous expression for R* (additional BF of the D*)

N_s can be written in terms of |V_{cb}| and the form factors: also the form factors can be determined by a proper fit of the signal candidates

Fit to the signal and normalization ArXiv:2001.03225

Template fit to m_{corr} and $p_{\perp}(D_s)$ identify the signal yields and provides a simultaneous measurement of the ratios R(*) and the form factors

 GeV/c^2

Candidates per 0.2

Results on |V_{cb}|

 $|V_{cb}|_{CLN} = (41.4 \pm 0.6(stat) \pm 0.9(syst) \pm 1.2(ext)) \times 10^{-3}$ $|V_{cb}|_{BGL} = (42.3 \pm 0.8(stat) \pm 0.9(syst) \pm 1.2(ext)) \times 10^{-3}$

Rom

- First measurement of |V_{cb}| using B_s
 - First measurement of |V_{cb}| in an hadronic environment
- The results are consistent between CLN and BGL
- Results compatible with world average for both inclusive and exclusive determinations
- Uncertainty not competitive with bfactories: limited by knowledge of fs/fd

The approach can be applied also to B⁰ decays!

Study of $B_s \rightarrow D_s^* \mu \nu$

- Determination of the differential decay rate $d\Gamma/dq^2$
- Measure more precisely the form factors in the CLN and BGL parametrisations

$$\frac{d\Gamma(B_s^0 \to D_s^{*-} \mu^+ \nu_\mu)}{dq^2} = \frac{G_F^2 |V_{cb}|^2 |\eta_{\rm EW}|^2 |\vec{p}|q^2}{96 \,\pi^3 \, m_{B_s^0}^2} \left(1 - \frac{m_\mu^2}{q^2}\right)^2 \\ \times \left[\left(|H_+|^2 + |H_-|^2 + |H_0|^2\right) \left(1 + \frac{m_\mu^2}{2 \, q^2}\right) + \frac{3}{2} \frac{m_\mu^2}{q^2} |H_t|^2 \right]$$

Analysis Strategy

- Extract the production rate of $B_s \rightarrow D_s^* \mu v$ as a function of w (2016 data)
 - Fully reconstruct $D_s^* \rightarrow D_s^\gamma$
 - Use templates from simulation, properly correctly for data/MC differences from control samples
- Corrected the raw yields for detector resolution (unfolding) and selection/reconstructed efficiencies
- Fit the unfolded and efficiency corrected spectrum with different parameterisations
 - CLN: fit only ha1(w) and slope the single parameter
 - BGL: fir the leading form factor f(w) with two parameters
 - In both cases: the other functions taken from external sources

Candidate selection

- Fully reconstruct the $D_s^* \rightarrow D_s^\gamma$
 - Requires the selection of soft photons within a cone around the D_s direction $_{\times 10^3}$

- Isolation of the muon candidate
- Required a minimum muon p_{T}

Signal yields

LHCb-PAPER-2019-046 R.V.Gomez CERN Seminar 12/2/20

M.Rotondo

Roma 2020

$B_{s} \rightarrow D_{s}^{*}\mu\nu$ spectrum

 $a_1^f = -0.002 \pm 0.034(\text{stat}) \pm 0.046(\text{syst})$

 $a_2^f = 0.93^{+0.05}_{-0.20} (\text{stat})^{+0.04}_{-0.38} (\text{syst})$

LHCb-PAPER-2019-046 R.V.Gomez CERN Seminar 12/2/20

These results and techniques are paving the road for ongoing tests of LFU in the B_s sector

M.Rotondo

 $q_{\rm true}^2 \, [{\rm GeV}^2]$

10

Roma 2020

W

$B \rightarrow D^{(*)} \tau v$

Lepton Universality

- Lepton Universality is a key feature of the Standard Model
- The only difference between electrons, muons and taus is the mass
 - Once corrected for the lepton masses, the decays with electrons, muons and taus should be identical!
 - LFU Violation would be a clear signature of BSM Physics
- 1) Deviations with expectations observed in $b \rightarrow s$ transitions

$$R(K) = \frac{\mathcal{B}(B \to K\mu^+\mu^-)}{\mathcal{B}(B \to Ke^+e^-)} \qquad \qquad R(K^*) = \frac{\mathcal{B}(B \to K^*\mu^+\mu^-)}{\mathcal{B}(B \to K^*e^+e^-)}$$

• 2) Deviations with expectations observed in $b \rightarrow c$ transitions

$$R(D) = \frac{\mathcal{B}(B \to D\tau\nu_{\tau})}{\mathcal{B}(B \to D\ell\nu_{\ell})} \qquad \qquad R(D^*) = \frac{\mathcal{B}(B \to D^*\tau\nu_{\tau})}{\mathcal{B}(B \to D^*\ell\nu_{\ell})}$$

• The SM predictions have reduced unknown hadronic contributions!

M.Rotondo

Roma 2020

Lepton Identification is Not Universal

Muons:

- Stable within LHCb
- No radiation
- Electrons:
 - Bremssthrahlung emission in the detector: partially recovered from a detected γ
 - Contamination from γ conversions

• Taus:

- Short lifetime: we see only the products
- Neutrinos in the final state: $\tau \rightarrow \mu \nu \nu$, $\tau \rightarrow \pi \nu$, $\tau \rightarrow \pi \pi \pi \nu$
- Large contamination from other heavy meson decays

$B \rightarrow D^{(*)} \tau v$: measurements

• Experiment can access directly *R*(D) and *R*(D*) ratios

$$\mathcal{R}(D) = \frac{\Gamma(B \to D\tau\nu_{\tau})}{\Gamma(B \to D\ell\nu_{\ell})\ell} = e, \mu$$

$$\mathcal{R}(D^*) = \frac{\Gamma(B \to D^*\tau\nu_{\tau})}{\Gamma(B \to D^*\ell\nu_{\ell})} = e, \mu$$

$$\mathcal{R}(D^{(*)}) = \frac{N_{sig}}{N_{norm}} \times \frac{\epsilon_{norm}}{\epsilon_{sig}}$$

Several experimental and theoretical uncertainties cancel in ratio

- D^(*) reconstruction / Particle ID /tracking eff.
- |V_{cb}| & Form Factors (partially)

Very precise
SM prediction $R(D) = 0.299 \pm 0.004$ $\sigma = 1.0\%$
 $R(D^*) = 0.258 \pm 0.005$ $\sigma = 2.0\%$

Tagging at BFactories

Weak signal signature

- Many neutrinos in the final state
- Lack of kinematics constraints in the final state

- Tag B determines charge and momentum of signal B
- All remaining particles must come from signal B: Little activity in the Calorimeter

Results of Fit $B \rightarrow D^{(*)} \tau v$

Signal signature:

- \rightarrow Large missing momentum
- \rightarrow Softer muon from Tau decays

 $m_{miss}^{2} = (p_{e+e-} - p_{tag} - p_{D(*)} - p_{\ell})^{2}$ p_{ℓ}^{*} in the B_{sig} rest-frame

R(D*) at LHCb

Signal $(B^0 \to D^{*+}\tau^-\overline{\nu}_{\tau})$ Normalisation $(B^0 \to D^{*+}\mu^-\overline{\nu}_{\mu})$ $X_{\overline{b}}$ \overline{B}^0 \overline{B}^0 $\overline{\nu}_{\mu}$ $\overline{\nu}_{\mu}$ $\overline{\nu}_{\tau}$ $\overline{\nu}_{\mu}$ $\overline{\nu}_{\tau}$ $\overline{\nu}_{\mu}$ $\overline{\nu}_{\tau}$ $\overline{\nu}_{\tau}$ $\overline{\nu}_{\mu}$ $\overline{\nu}_{\tau}$ $\overline{\nu}_{\tau}$ $\overline{\nu}_{\mu}$ $\overline{\nu}_{\tau}$ $\overline{\nu}_{\tau}$ $\overline{\nu}_{\mu}$ $\overline{\nu}_{\tau}$ $\overline{\nu}_{\tau}$ $\overline{$

PRL115,111803(2015)

- Trigger on the charm component (to not bias the signal extraction)
- Selection exploiting excellent LHCb performances of the VELO and the particle identification
- Full selection efficiency ratio $\varepsilon_{T} / \varepsilon_{u} = (77.6 \pm 1.4) \%$
 - Lower p_T and worst vertex in the tau decay

B rest-frame determination

- B momentum unknown in production from pp collision in LHCb
 - B mainly from $gg \rightarrow b\overline{b}$
- Transverse missing momentum is know but no way of measuring longitudinal component
 - B boost >> energy released in the decay
 - ~18% resolution on p_B

Results (4 q² bins)

Binned 3-D fit in m_{miss}², E_µ and q² (40 x 30 x 4 bins)

 $R(D^*) = 0.336 \pm 0.027 \pm 0.030$

- In agreement with BaBar and Belle measurements
- 2.1σ higher than SM

 Compared to leptonic τ decay, the largest source of contamination comes from B→D*3πX decays: completely different backgrounds, and new opportunities to control them!

PRL120(2018)171802 PRD97(2018)072013

• Signal normalized to $B \rightarrow D^*3\pi$

 $B \rightarrow D^* \tau v$ with $\tau \rightarrow 3\pi(\pi^0) v$

$$\langle (D^*) \equiv \frac{Br(B^0 \to D^{*-}\tau^+\nu_{\tau})}{Br(B^0 \to D^{*-}3\pi)} = \frac{N_{D^*\tau\nu_{\tau}}}{N_{D^*3\pi}} \times \frac{\varepsilon_{D^*3\pi}}{\varepsilon_{D^*\tau\nu_{\tau}}} \times \frac{1}{Br(\tau^+ \to 3\pi(\pi^0)\overline{\nu}_{\tau})}$$

- Signal and normalization share the same visible final state
 - Cancel most of the systematics: PID, trigger, tracking efficiency

$$\mathsf{R}(D^*) = \mathsf{K}(D^*) \times \frac{Br(B^0 \to D^{*-} 3\pi)}{Br(B^0 \to D^{*-} \mu^+ \nu_{\mu})} = \frac{4\% \text{ precision}}{4\% \text{ precision}}$$

$B \rightarrow D^* \tau v$: background reduction

• Decay topology exploited to suppress the abundant background from $H_b \rightarrow D^*3\pi X$ (BR ~ 100 x Signal)

- Minimum distance between H_b and τ required: reduce these background by a factor 1000
- Remaining backgrounds contains two charm hadrons:
 - uses informations from additional energy around the t direction, and the resonant structure in the $D^*3\pi$ system (BDT)
- $X_b \rightarrow D^* D_s^+ X: \sim 10 \text{ x signal}$

PRL120(2018)171802

PRD97(2018)072013

- $X_b \rightarrow D^* D^+ X : ~1 x signal$
- $X_b \rightarrow D^* D^0 X : \sim 0.2 \text{ x signal}$

Fit results

- Normalization mode
- Signal extracted from 3D fit on
 - q² (8 bins)
 - 3π decay time (8 bins)
 - BDT (4 bins)

PRL120(2018)171802

PRD97(2018)072013

 $R(D^*) = 0.283 \pm 0.019 \pm 0.025 \pm 0.013$ (from external inputs)

Roma 2020

Status of R(D)-R(D*)

Isospin breaking due to QED PRL120(2018)261804

M.Rotondo

Roma 2020

Status of R(D)-R(D*)

How QED impacts R(D) measurements EPJC79(2019)744

Roma 2020

Beyond R(D)-R(D*) observables

$$\mathcal{R}(J/\Psi) = rac{\mathcal{B}(B_c
ightarrow J/\Psi au
u)}{\mathcal{B}(B_c
ightarrow J/\Psi \mu
u)}$$

 $\begin{array}{l} \mathsf{R}(\mathsf{J}/\Psi) \texttt{=} 0.71 \pm 0.17 \pm 0.18 \\ \mathsf{2}\sigma \text{ higher than the SM} \end{array}$

BEL

SM

- Fit with $F_r^{D^*}=0.6$

0-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

60

40

20

 $\cos \Theta_{\rm hel}$

Angular analyses

- $B \rightarrow D^*$ and $B_s \rightarrow D_s^*$: rich angular structure can be exploited:
 - Strong sensitivity to NP Wilson coefficients (for example in arXiv:1602.03030)
 - Belle-II will further analyses these decays
 - With the very high statistics collected in LHCb it is possible to perform angular analysis even with a quite poor resolution on the angular observables

 For B→D* with hadronic tau, a novel approach has been proposed in D. Hill et al. JHEP11(2019)133

Future steps: larger data samples

- In the coming years of data taking the integrated luminosity will greatly increase
- The higher statistics in the control regions will help in constraining the background model
- MC statistics is the limiting systematic in the present measurements
 - Fast simulations already developed arXiv:1810.10362

Conclusions

- Semileptonic decays of the B-hadrons are a rich mine of good physics
- They requires close interplay between theorists and experimentalist
- CKM elements: the Inclusive-Exclusive puzzle have to be understood!
 - Inclusive measurements will be dominated by Belle-II in the near future!
 - On exclusive measurements LHCb has shown un-expected great capabilities
- The R(D)-R(D*) anomalies requires further checks
 - Studies in different hadrons are ongoing: $R(D_s)$, $R(D_s^*)$, $R(\Lambda_c)$, $R(J/\Psi)$
 - Exploit b—u transitions: $R(\pi)$, $R(\rho)$, R(p)
 - With the increasing in precision, it is crucial to consider effects not considered so far: QED corrections
 - If these anomalies are due to fluctuations, limited QCD understanding, systematics, we will know soon!
 - Crucial to exploit all the data we already have in LHCb
 - Belle-II could confirm/disprove (Confirmations are important as first measurements!)

M.Rotondo

Roma 2020

Backup

Large New Physics Effect! H²,LQ, ?-

- The combination of R(D) and R(D*) excludes the 2HDM-II
- More general 2HDM-III can explain the data (more parameters)

M.Rotondo

0.0

0.5

1.0

1.5

p_{D*} [GeV/c]

2.0

0.0

0.5

1.0

p_{D*} [GeV/c]

2.0

1.5

B-Factories BaBar and Belle

- CM energy of the Y(4S) = 10.58 GeV most of the time
 - Large production of B meson from Y decays
 - $\sigma_{10.58\text{GeV}}(e^+e^- \rightarrow bb) = 1.06\text{nb}$
 - Run at Y(5S) allows to access the B_s mesons

$$e^+e^- \to \Upsilon(4S) \to B\overline{B}$$

B-Factories: hermetic detectors, low background, Excellent PID, access (mainly) at B^{0/+}

> About $(771 + 467)x10^6$ e⁺e⁻ \rightarrow BB events in the Belle+BaBar data

D** backgrounds

- $B \to D^{**} \mu v_{\mu}$ where D^{**} refers to any resonant or non resonant excited charm state
 - Separate templates for narrow resonances D₁(2420), D₂*(2460), D₁'(2430)
 - Form Factor from LLSW model with slope of IW function floated

 $D^*\mu\pi$ control sample

 \sim 12% of the normalization

D** Background is

mode

- $B \rightarrow D^* \pi \pi \mu v_{\mu}$ recently measured by BaBar
 - Modelled using ISGW2 parameterization
 - q^2 distribution tuned on data with $D^*\mu\pi\pi$ control sample

Roma 2020