Characterization of the SiPMs of the TOF-WALL Detector

Marco Montefiori

2 December 2020

Analysis workflow for SiPM characterization

Single signal: DLED technique

DLED technique is a filtering procedure with the aim to reduce single cell pulse width.

- An original waveform replica delayed by 5 ns is created;
- This delayed replica is subtracted to original waveform.

Single signal: waveform correction

In this correction procedure, single cell signals well separated in time are selected and averaged to create a new DLED waveform \rightarrow undershoot corrected.

 Distance between the two peaks A_c is the area corresponding to a single cell. It was used to estimate the SiPM gain:

$$G = \frac{A_c}{e \cdot T}$$

where $e = 1.67 \cdot 10^{-19}$ C is the elementary charge and $T = 2373 \ V/A$ is the transimpedence.

In order to estimate V of breakdown, all gain values with respective voltage values was fitted with a linear function y(V) = a + bV.

Using fit results: $V_{br} = -\frac{a}{b} = 106V$

Cross-talk probability

- Once the amplitudes histogram was built, peaks corresponding to one and two triggered cells respectively were identified;
- by finding the middle point between two first peaks, one-cell events n₁ are recognized;
- cross-talk probability is estimated by the formula:

$$P_{CT} = \frac{n_{tot} - n_1}{n_{tot}}$$

where n_{tot} is the number of all the events.

After-pulse probability

- The histogram
 of all time distances between
 two consecutive peaks was built;
- since primary dark
 events follow a Poisson distribution,
 the histogram was fitted with
 a decreasing exponential function;
- events n_{af} that exceed the fit line are related to after-pulse;
- after-pulse probability is obtained by the formula:

$$P_{AF} = \frac{n_{af}}{n_{tot}}$$

Cross-talk and after-pulse probability vs voltage

Marco Montefiori SiPM characterization 2 December 2020 10 / 27

Light attenuation and time resolution of TOF-Wall bar

Experimental setup

- Bias voltage of SiPM was set to 120 V.
- Each distance measurement was evaluated from the right side of the bar.
- Source was moved from the right side to the left side with step of 1 cm.

Waveforms area

- After subtracting the baseline, signals area was calculated.
- ullet For a fixed value of distance, a eta spectrum-like distribution is expected.
- \bullet No analytical expression \to could not be fitted.

Left-right charge ratio

- For a fixed distance d, the output signals depend on many effects:
 - source spectrum is continuous;
 - light emission spectrum of scintillator is continuous.
- To avoid all these variables, the ratio of left and right SiPM charge was considered.
- Scintillation light follows a decreasing exponential law: $I(x) = I_0 e^{-\frac{x}{\lambda}}$
- For a fixed x coordinate on the bar:

$$I_R(x) = I_0 e^{-\frac{x}{\lambda}}; \quad I_L(x) = I_0 e^{-\frac{l-x}{\lambda}}$$

where I = 44 cm total length of the bar.

Left-right charge ratio

For each side:

- charge histograms were built;
- left-right ratio was calculated;
- respective histrograms were built and fitted with a Gaussian function.

 Mean points of the Gaussian distributions and respective distance values d were fitted with the function.

$$f(d) = C e^{-\frac{l-2d}{\lambda}}$$

where C takes into account of gain differences between the two SiPM.

- Results:
 - $C = 0.79 \pm 0.01$
 - $\lambda = (28.4 \pm 0.2)$ cm

Time resolution: CFD technique

For each distance value:

- the baseline of the signal was subtracted;
- a fraction (0.3) of maximum of the waveform V_{th} was chosen;
- t_L and t_R were set as the time when left and right waveforms crossed V_{th} .

Time resolution: CFD technique

For each distance value:

- time CFD was calculated as $t_{CFD} = t_R t_L$;
- t_{CFD} distributions were fitted with a Gaussian to estimate μ_t and σ_t .

 μ_t values as a function of distance were fitted with a linear function $\mu_t(d) = m \ d + q$ that provided:

- $m = (1.355 \pm 0.004) \ 10^{-10} \ {
 m s \ cm^{-1}}$
- $q = (-4.8 \pm 0.1) \ 10^{-10} \ s$

Saturation of TOF-Wall SiPMs

Experimental setup

- A single 3 \times 3 mm² SiPM with 25 μm cells size (MPPC, Hamamatsu Photonics);
- A TOF-Wall SiPM (series of 4 single SiPMs);
- A laser (PDL 800-B), $\lambda = 405$ nm, with a light diffuser;
- A calibrated photodiode (FDS1010, Thorlabs);
- A function generator used as external trigger for the laser.

Data taking: SiPM signals

- An overvoltage of 4 V was reached by applying a bias voltage of 56 V to the single SiPM and of 120 V to the TOF-Wall SiPM.
- A pulse frequency $\nu_{LASER} = 1.07$ MHz was set as laser external trigger.
- By changing the laser intensity, about 15000 waveforms were acquired and respective photocurrent and dark current were measured.

Data analysis

For each laser intensity value:

- charge histograms were built and fitted with a Gaussian function;
- effective photodiode current was estimated by subtracting dark current from photocurrent.

Data analysis

Once all charges Q and current I values were collected:

• the number of fired cells was calculated with the formula:

$$N_{fired} = \frac{A}{e R G}$$

• the number of detected photons was calculated with the formula:

$$N_{ph} = f \frac{I}{\nu_{LASER} E_{ph} \eta(\lambda)}$$

where: A signals area obtained by the Gaussian fit, $R=50~\Omega$ resistance of the oscilloscope, $e=1.6~10^{-19}~C$ elementary charge, G SiPM gain, $E_{ph}=4.9~10^{-19}~J$ photons energy and f ratio between SiPM surface and photodiode surface.

All data were fitted with the saturation formula: $N_{fired} = N_{tot} \ \left(1 - e^{-kN_{ph}}\right)$

- Single SiPM: $N_{tot} = 5036 \pm 44$, $k = (3.42 \pm 0.08) \ 10^{-5}$, $\chi^2_{red} = 1.1$
- TOF-Wall SiPM: $N_{tot} = 19115 \pm 140, \ k = (1.08 \pm 0.03) \ 10^{-5}, \ \chi^2_{red} = 1.2$
- The results have not been yet corrected for the voltage drop on the filter resistor.

Conclusions

- The most relevant parameters of the SiPMs have been studied. These parameters can be used to reproduce the SiPM response in simulation.
- The light attenuation along the bar has been studied using an electron source. The results
 are not consistent with the one obtained at CNAO since a higher attenuation length is
 obtained in this case.
- The SiPM saturation is currently under investigation to understand the relevance of this contribution when heavy ions were used.