

Beam Monitor MC studies

Yunsheng Dong

FOOT performance meeting

07/10/2020

Outline

- SC and BM fragmentation studies
- Inverse kinematic approach studies
- Next data taking at CNAO

Pre-target fragmentation

MC simulation: 12C @ 200 MeV/u on C target

Fragmentation rate:

- Target ~ 1.46%
- Start Counter ~ 0.13%
- Beam Monitor ~ 0.12%

Only SC fragmentation events:

- ~27% 1 reconstructable track
 + other particle hits
- ~10% only a B or C fragment, no other hits

Only BM fragmentation events:

- ~46% 1 reconstructable track
 + other particle hits
- ~17% only 1 particle track, no other hits

Number of hit selection

The hit distribution depends on the projectile charge and energy because of delta rays

With oxygen @ 400 MeV/u data, a reasonable cut is 8≤N_{hits}≤18

Survival rates:

- \sim 96% data with P @ 80 MeV
- \sim 95% data with O @ 400 MeV
- ~ 22% MC with SC fragmentation
- \sim 35% MC with BM fragmentation

Multitrack selection

Exploit the BM multi-track reconstruction capability

Select the events with only 1 reconstructed track

(after the number of hit criteria):

- Data with P @ 80 MeV: ~ 93%
- Data with O @ 400 MeV/u: ~ 79% (Space-time rel. not optimized)
- MC with SC fragmentation: $\sim 18\%$
- MC with BM fragmentation: ~ 32%

Inverse kinematic approach

- Lorentz transformation to invert the kinematics in the PT target fragmentation data
- The transformation can be written as:

 $\mathbf{A'} = \wedge \mathbf{A}$

where **A** is the four momentum of the projectile **measured by the BM** and Λ is:

$$\Lambda = egin{pmatrix} \gamma & -eta_x\gamma & -eta_y\gamma & -eta_z\gamma \ -eta_x\gamma & 1+(\gamma-1)rac{eta_x^2}{eta^2} & (\gamma-1)rac{eta_xeta_y}{eta^2} & (\gamma-1)rac{eta_xeta_y}{eta^2} \ -eta_y\gamma & (\gamma-1)rac{eta_yeta_x}{eta^2} & 1+(\gamma-1)rac{eta_y^2}{eta^2} & (\gamma-1)rac{eta_yeta_z}{eta^2} \ -eta_z\gamma & (\gamma-1)rac{eta_yeta_x}{eta^2} & 1+(\gamma-1)rac{eta_y}{eta^2} & 1+(\gamma-1)rac{eta_yeta_z}{eta^2} \ -eta_z\gamma & (\gamma-1)rac{eta_zeta_x}{eta^2} & (\gamma-1)rac{eta_zeta_y}{eta^2} & 1+(\gamma-1)rac{eta_yeta_z}{eta^2} \ eta_z & (\gamma-1)rac{eta_yeta_z}{eta^2} & 1+(\gamma-1)rac{eta_yeta_z}{eta^2} \ eta_z & (\gamma-1)rac{eta_yeta_z}{eta^2} & 1+(\gamma-1)rac{eta_yeta_z}{eta^2} \end{pmatrix}$$

Energy of fragments in the lab syst.

MC simulation with O @ 200 MeV/u on 2mm of C_2H_4 target Energy of the fragments that arrive to the Tof-Wall in the lab syst. with MC truth

BM resolution effect

BM resolution effect on the energies of the fragments in the projectile system of reference:

- The BM measured resolution, efficiency and noise are reproduced in the reconstruction software
- Given a FLUKA simulation, the primary track parameters are retrieved by the MC truth and the BM reconstructed track
- The kinematic inversion is performed with the MC truth and the BM track
- For each fragment, the energy in the projectile syst. can be retrieved with the MC truth and BM reconstructed inversion matrix

Cross section estimates

do/dE in the projectile syst. with the inversion made from the MC projectile parameters and from the track reconstructed by the BM (detectors eff=1, no unfolding, only BM resolution)

Cross section resolutions

Relative cross sections resolution: (MC-BM)/MC The BM resolution effect on the cross sections is of few %

10

Next data taking @ CNAO

Next data taking at CNAO in December 2020

People involved (with turn over):

- Milano: Yun, Giuseppe, Silvia (Maybe Ilaria and Serena)
- Trento: Sofia, Francesco, Benedetto

BM Requests:

- Without beam: setup and test the channel readout with cosmic rays.
- With beam: if everything works, we do not have real beam time requests.

we just need a run without the target and with the VTX to try the space-time relations calibration (~200000 evts. at least)

Cross section estimates in labo syst.

MC simulation with O @ 200 MeV/u on 2mm of C_2H_4 target d σ /dE in the labo syst. (no unfolding, detector efficiencies etc., only "MC truth")

13