GSI2: ¹⁶O (200 MEV) ON C₂H₄ Update on the Emulsion Chamber Analysis

A. Alexandrov, A. Di Crescenzo, G. De Lellis, <u>G. Galati</u>, V. Gentile, A. Iuliano, A. Lauria, M. C. Montesi, A. Pastore, V. Tioukov *Università di Napoli "Federico II", INFN Napoli, INFN Bari*

VIBE meeting, October 6 2020

	20	2020	• (
TARGET P	Oxygen 200 MeV/n	Oxygen 400 MeV/n	Carbon 700MeV/n	•
Carbon	GSI1	GSI3	GSI5	• (
Polyethylene	GSI2	GSI4	GSI6	• (

- GSI2: Scanning completed, analysis on-going
- GSI1: Scanning completed, alignment between emulsions completed for S2 and S3
- GSI3, GSI4: Scanning completed (quality check) on-going)
- GSI5, GSI6: Scanning on-going

COSMIC RAYS BACKGROUND

- Nuclear emulsions integrate cosmic rays since their production up to their development

mimic a vertex or be associated to a true vertex if they're reconstructed as more than one track

• Before and after brick assembling nuclear emulsions are stored all together (no thick passive material) in a different order respect to the brick one. The base-tracks due to the cosmic rays integrated during this period, therefore, should not form any track, apart from combinatorial associations (tracks 2 or 3 base-tracks long).

ADDED TO MONTE CARLO

• When the brick is assembled it integrates cosmic rays that are then reconstructed as long tracks. These could

COMBINATORIAL BACKGROUND ADDED TO MC - EXAMPLE

Background base-tracks were taken from data, in a region with no signal...

Background (cut on X coordinate)

Background translated to the signal region

(DATA) 1604247 entries

(DATA)

s.eY:s.eX

105744 entries

COMBINATORIAL BACKGROUND ADDED TO MC - EXAMPLE

... and added to Monte Carlo

18746 entries

1622993 entries

VERTEXING - TRACKS SEARCHING APPLIED TO ALL VERTICES

- Search for tracks starting or ending within: Prelliminary \checkmark DX or DY < 1000 micron from the vertex \sqrt{DZ} =8000 micron from the vertex \checkmark IP < 100 micron
 - Incoming tracks: if the oxygen track is found, only tracks with nseg≤3 are accepted as incoming

One track found! 8 seg, Th 0.007 ip 29.7, Pl 1-9

(=)······=······=······=······=······

- The script was very slow (several hours for 1000 vertices)
- New strategy: saving the tracks in the vertex neighborhood during vertexing procedure
- Apply the search for tracks related to the vertex only within the neighbor ones
- Script much faster (about 1 min for 1000 vertices)

EXTRA TRACKS SEARCHING

Preliminary	MC		DATA		True MC
	before	after	before	after	~ 0500
Entries	7968		14193		
n≥3	3663	5686	4216	8716	the number the number of the n
vtx good (2 trks ok)	3291	5237			high
vtx fake	372	449			multipl increa
vtx good (3 trks ok)	2830	4493			
vtx fake	833	1193			
n=2	4305	2282	9977	5477	2-prov vertic
vtx ok (same event, different track)	1394	606			decree
same track	400	227			
vtx fake (different event, different track)	2511	1449			

- Improve results tuning the algorithm and its parameters
- Visual check of vertices
- BDT analysis to separate good and fake vertices

A DOUBLE CHECK ON CHARGE IDENTIFICATION WITH PCA

- "Problem": with PCA we obtain negative values, even if our starting matrix is non-negative → this *could* be a hint that the PCA method is not adequate
- Trial using other methods to check if the shape of the distribution of VP_xxx is the same
- We want the best matrix of rank 1 that approximates data: three methods are exploited:
 - **SVD:** *Singular Value Decomposition*
 - NMF: Non-negative Matrix Factorization
 - PCA: Principal Component Analysis

12

SVD, NMF, PCA

SVD: Singular Value Decomposition

NMF: Non-negative Matrix Factorization

- Minimize the 2-norm
 between the data matrix and the rank-1 approximation
- Theorem: the SVD matrix is unique
- Minimize the 2-norm
 between the data matrix
 and the rank-1
 approximation with
 positive elements

- PCA: Principal Component Analysis
- Data are normalized so that all columns have mean 0.
 Then SVD is applied

ARTICLE ON CHARGE IDENTIFICATION

- Draft circulated within the Collaboration
- Paper improved thanks to all the comments received
- Waiting for the comments of the Editorial Board

Charge identification of fragments with the emulsion spectrometer of the FOOT experiment

G. Galati^{a,*}, A. Alexandrov^{b,a,c,d}, B. Alpat^e, G. Ambrosi^f, S. Argirò^{g,h}, R. Arteche Diazⁱ, N. Bartosik^g, G. Battistoni^j, N. Belcari^{l,k}, E. Bellinzona^m, S. Biondi^{n,o}, M. G. Bisogni^{l,k}, G. Bruniⁿ, P. Carra^{l,k}, P. Cerello^h, E. Ciarrocchi^{l,k}, A. Clozza^p, S. Colombi^{m,q}, A. Del Guerra^{l,k}, M. De Simoni^{s,r} A. Di Crescenzo^{c,a}, B. Di Ruzza^m, M. Donetti^{h,e}, Y. Dong^{j,t}, M. Durante^{u,v}, R. Faccini^{s,r}, V. Ferrero^h, E. Fiandrini^{f,w}, C. Finck^x, E. Fiorina^h, M. Fischetti^{y,r}, M. Francesconi^{l,k}, M. Franchini^{n,o}, G. Franciosini^{s,r}, L. Galli^k V. Gentile^{b,a}, G. Giraudo^h, R. Hetzel^z, E. Iarocci^p, M. Ionica^f, A. Iuliano^{c,a}, K. Kanxheri^f, A. C. Kraan^k, V. Lante^e, C. La Tessa^{m,q}, M. Laurenza^p, A. Lauria^{m,a}, E. Lopez Torres^{aa,h}, M. Marafini^{ab,r}, C. Massimi^{n,o}, I. Mattei^j, A. Mengarelliⁿ, A. Moggi^k, M. C. Montesi^{ac,a}, M. C. Morone^{ad,ae} M. Morrocchi^{k,1}, S. Muraro^j, F. Murtas^s, A. Pastore^{af}, N. Pastrone^h, V. Patera^{y,r}, F. Pennazio^h, P. Placidi^{f,ag}, M. Pullia^e, F. Raffaelli^k, L. Ramello^{ah,h}, R. Ridolfi^o, V. Rosso^{l,k}, C. Sanelli^p, A. Sarti^{y,r,ab}, G. Sartorelli^{n,o}, O. Sato^{ai}, S. Savazzi^e, L. Scavarda^{g,h}, A. Schiavi^{y,r}, C. Schuy^u, E. Scifoni^m, A. Sciubba^{y,p}, A. Sécher^x, M. Selviⁿ, L. Servoli^f, G. Silvestre^{f,w}, M. Sitta^{ah,h}, R. Spighiⁿ, E. Spiriti^p, G. Sportelli^{l,k}, A. Stahl^z, V. Tioukov^a, S. Tomassini^p, F. Tommasino^{m,q}, M. Toppi^{y,p}, G. Traini^r, S. M. Valle^j, M. Vanstalle^x, M. Villa^{n,o}, U. Weber^u, R. Zarrella^{k,l}, A. Zoccoli^{n,o}, G. De Lellis^{c,a}

^aINFN Section of Napoli, Napoli, Italy

^bNational University of Science and Technology, MISIS, RUS-119049 Moscow, Russia ^cUniversity of Napoli, Department of Physics "E. Pancini", Napoli, Italy ^dLebedev Physical Institute of the Russian Academy of Sciences, RUS-119991 Moscow, Russia^eCentro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy ^fINFN Section of Perugia, Perugia, Italy ^gUniversity of Torino, Department of Physics, Torino, Italy ^hINFN Section of Torino, Torino, Italy ⁱCEADEN, Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear, Havana, Cuba ^jINFN Section of Milano, Milano, Italy ^kINFN Section of Pisa, Pisa, Italy ¹University of Pisa, Department of Physics, Pisa, Italy ^mTrento Institute for Fundamental Physics and Applications, Istituto Nazionale di Fisica Nucleare (TIFPA-INFN), Trento, Italy ⁿINFN Section of Bologna, Bologna, Italy ^oUniversity of Bologna, Department of Physics and Astronomy, Bologna, Italy ^pINFN Laboratori Nazionali di Frascati, Frascati, Italy ^qUniversity of Trento, Department of Physics, Trento, Italy ^rINFN Section of Roma 1, Rome, Italy

^sUniversity of Rome La Sapienza, Department of Physics, Rome, Italy ^tUniversity of Milano, Department of Physics, Milano, Italy

*Corresponding author Email address: giuliana.galati@na.infn.it (G. Galati)

Preprint submitted to Open Physics

v3.1

October 6, 2020

15

CNAO TECHNICAL TEST FOR NIT EMULSIONS

- improve sensitivity

- Physics goal: use protons to study the fragmentation of the target

• New generation nuclear emulsions with nanometric grains: NIT (*Nano Imaging Trackers*)

• Granularity one order of magnitude higher: grain diameters down to a few tens of nm

• Emulsion gel with about ten basic chemical elements: heavy elements, such as silver and bromine, plus lighter elements, such as Carbon, Nitrogen, Oxygen and Hydrogen to

• Technical test: check the sensitivity of NIT emulsion films to Carbon ions and protons

• People at CNAO: 3

- NIT emulsions
- Low temperature chamber
- Cooling system
- Linear motorized stage
- Margherita or Margarita
- Beam monitor
- Big and small tables as support

• Carbon and proton beams with the lowest possible energy and intensity

Back up slides

SVD EXPLANATION

U is a base of **M** with orthogonal vectors since its singular values are all non-zero, meaning that the matrix **M** has maximum rank

 Σ singular values are ordered: (1,1) is the biggest, the others can be neglected

V^{*} contains the coefficients of the linear combination

The best rank-1 approximation of data is given by the first column of $\mathbf{U} \ge \Sigma(1,1) \ge 1$ the first row of \mathbf{V}^*

