- Repeating experiments in the literature: double differential inclusive cross section for the production of neutron in p+12C and 12C+12C reactions
 - > angle
 - Incoming particle energy
- Raw estimation of the expected count rate, neutron energy spectrum and background from available simulation (5x107 primaries)

C(p,xn) differential cross section (inclusive)

p @ 113 MeV

p @ 256 MeV

Angles: 7.5, 30, 60, 150 deg

NUCLEAR SCIENCE AND ENGINEERING: 110, 289-298 (1992) 102, 310-321 (1989)

 $^{1}H+C_{2}H_{4}$ @200MeV/u (newgeom) statistics: 5×10^{7} primaries

Sofia Colombi valice.manna@bo.infn.it valicela.marafini valicela.m

 $^{1}H+C_{2}H_{4}$ @200MeV/u (newgeom) statistics: 5×10^{7} primaries

Area = 45 (25) cm² $\Delta\theta \sim 2 \text{ deg.}$

@Distance = 100 cm

E _n	TOF
1 MeV	72 ns
10 MeV	23 ns
50 MeV	10.6 ns
100 MeV	7.8 ns
200 MeV	5.9 ns

MC simulations – particles from target (5-mm thick)

 $^{1}\text{H+C}_{2}\text{H}_{4}$ @200MeV/u (newgeom) statistics: 5×10^{7} primaries

Area = 45 (25) cm² $\Delta\theta \sim 2 \text{ deg.}$

@Distance = 100 cm

E _n	TOF
1 MeV	72 ns
10 MeV	23 ns
50 MeV	10.6 ns
100 MeV	7.8 ns
200 MeV	5.9 ns

 ${}^{1}H+C_{2}H_{4}$ @200MeV/u (newgeom) statistics: 5×10^{7} primaries

Area = $45 (25) \text{ cm}^2$ $\Delta\theta \sim 2 \text{ deg.}$

@Distance = 100 cm

E _n	TOF		
1 MeV	72 ns		
10 MeV	23 ns		
50 MeV	10.6 ns		
100 MeV	7.8 ns		
200 MeV	5.9 ns		

MC simulations – particles from target (5-mm thick)

 $^{1}H+C_{2}H_{4}$ @200MeV/u (newgeom) statistics: 5×10^{7} primaries

Area = 45 (25) cm² $\Delta\theta \sim 2 \text{ deg.}$

@Distance = 100 cm

E _n	TOF
1 MeV	72 ns
10 MeV	23 ns
50 MeV	10.6 ns
100 MeV	7.8 ns
200 MeV	5.9 ns

MC simulations – particles from target (5-mm thick)

 $^{1}\text{H+C}_{2}\text{H}_{4}$ @200MeV/u (newgeom) statistics: 5×10^{7} primaries

Area = 45 (25) cm² $\Delta\theta \sim 2 \text{ deg}$.

@Distance = 100 cm

E _n	TOF		
1 MeV	72 ns		
10 MeV	23 ns		
50 MeV	10.6 ns		
100 MeV	7.8 ns		
200 MeV	5.9 ns		

PHYSICAL REVIEW C **64** (2001) 034607 and 054609

 $^{1}H+C_{2}H_{4}$ @200MeV/u (newgeom) statistics: 5×10^{7} primaries

 $^{1}\text{H+C}_{2}\text{H}_{4}$ @200MeV/u (newgeom) statistics: 5×10^{7} primaries

Area = 45 (25) cm² $\Delta\theta \sim 2 \text{ deg.}$

@Distance = 100 cm

E _n	TOF		
1 MeV	72 ns		
10 MeV	23 ns		
50 MeV	10.6 ns		
100 MeV	7.8 ns		
200 MeV	5.9 ns		

 $^{1}\text{H+C}_{2}\text{H}_{4}$ @200MeV/u (newgeom) statistics: 5×10^{7} primaries

Area = 45 (25) cm² $\Delta\theta \sim 2 \text{ deg.}$

@Distance = 100 cm

E _n	TOF			
1 MeV	72 ns			
10 MeV	23 ns			
50 MeV	10.6 ns			
100 MeV	7.8 ns			
200 MeV	5.9 ns			

MC simulations – particles from target (5-mm thick)

 $^{1}H+C_{2}H_{4}$ @200MeV/u (newgeom) statistics: 5×10^{7} primaries

Area = 45 (25) cm² $\Delta\theta \sim 2 \text{ deg.}$

@Distance = 100 cm

E_n TOF

~ 36000 neutrons

Geometric efficiency ~ 1% Detection efficiency ~ 10 %

→ 36 events in the detector for 5x10⁷ primaries

=> 3 hours for ~30 neutrons (beam 1kHz)

michela.marafini V Cristian Massimi V Mauro Villa V 13

T montly meeting 7 October 2020

Summarising

During the next test beam at CNAO It could be possible to **repeat** some **measurements** present **in the literature** about neutron production in p+12C and 12C+12C reactions:

- p + 12C @ 30 and 60 (150?) deg. with energy of 113 and 256 MeV
- 12C + 12C @ 30 and 80 deg. with energy of 135 and 290 MeV/u

These tests will provide the information about the feasibility of detecting neutrons with the present setup and with other detectors.

Dedicated simulations are required to be able to better prepare the test and estimate the required beam time.

Dedicated beam time (approximately ... h) is necessary to perform the test => 5 hours at 1 MHz ?:)

Possible Setup (HE)

- Distance: ~1 m
- 4 crystals:
 - Front face: 2.5 cm
 - ► Back face: 3.5 cm
 - 3 mm EJ232 (plastic scintillator)

Xylene/Toluene: NE213 / BC501

• Liquid scintillating detector optimized for n/γ discrimination; det size 3 in x 3 in

Scintillation Properties	BC-501A	BC-501	
Light Output, %Anthracene	78	80	
Wavelength of Maximum Emission, nm	425	425	
Decay Time, short component, ns	3.2	3.3	
Atomic Composition			
No. of H Atoms per cc (x10 ²²)	4.82	5.25	
No. of C Atoms per cc (x10 ²²)	3.98	4.08	
Ratio H:C Atoms	1.212	1.287	
No. of Electrons per cc (x10 ²³)	2.87	2.97	

Additional	Properties	of BC-501A
------------	-------------------	------------

Mean Decay Times of first three components (Ref. 2)

3.16, 32.3 & 270 ns

Possible Setup (LE)

In a past experiment with those detectors with Am-Be source

0.1-14 MeV Neutrons

Possible Setup (LE)

BC-720

ZnS(Ag) phosphor embedded in a clear hydrogenous plastic and functions by means of the proton recoil interaction in the plastic, the proton being detected by the ZnS.

Detector size: 3" diameter

Scintillation Properties	
Decay Time, μs	0.2
Wavelength of Max. Emission, nm	450

Possible Setup (LE)

Open Issues: 2

DAQ Channels

- 4 BGO => WDAQ Calorimeter (6 free channels => 2 free channels)
- 1 Veto. => WDAQ Margarita (8 free channels => 7 free channels)

and/or

- 2 BC-720 + 2 NE213 => WDAQ Calorimeter (6 free channels => 2 free channels)
- 1 Veto. => WDAQ Margarita (8 free channels => 7 free channels)

Trigger strategy

- Margarita in AND with OR of the neutron detectors => Luca.. is it possible? The low energy measurement can be in parallel or in a different run => the number of different allowed triggers will define the strategy
- Define a run for efficiency measurements (and Delta calbes)
- Schedule a special run at high rate

TO DO LIST

- Define the distance from the detectors
- Build the Veto
- Keep testing the BGO at SBAI and low energy detectors at Bologna with cosmic rays and sources

Make a tour on MC simulation (Fluka):

 Can we put a box of the correct size in the FOOT simulation in order to study the expected background?

Backupslides

C(p,xn) differential cross section (inclusive)

113 MeV

256 MeV

Fig. 3. Experimental differential cross sections for carbon compared with HETC calculations.

800 MeV

Thin target, heavy-lon induced reactions

Handbook on Secondary Particle Production And Transport by High-energy Heavy Ions

by Nakamura and Heilbronn

Beam ion and	Targets	Measured	θ	Emin	Facility
energy		spectra	(deg)	(MeV)	
(MeV/nucleon)					
He (135)	C, Al, Cu, Pb	ddx, n/dΩ	0, 15, 30, 50,	10 (all	RIKEN
		total	80, 110	angles)	
He (230)	Al, Cu	ddx, n/dΩ	5, 10, 20, 30,	5.5, 5, 4, 3.5,	HIMAC
` ,	· .	total	40, 60, 80	3.5, 3	(PH2)
C (135)	C, Al, Cu, Pb	ddx, n/dΩ	0, 15, 30, 50,		RIKEN
` /		total	80, 110	angles)	
			00, 110	ungreb)	
C (290)	C, Cu, Pb,	ddx, n/dΩ		10, 3, 3, 7, 4,	
	marsbar	total	40, 60, 80	3, 3	(SB3)
C (400)	Li, C, CH ₂ ,	ddx, n/dΩ		8.5, 5, 3.5, 3,	1
	Al, Cu, Pb	total	40, 60, 80	3, 3	(PH2 and
3T (400)		- (10			SB3)
N (400)	C, Cu	ddx, n/dΩ	5, 10, 20, 30,	1	HIMAC
>T. (126)	C ALC D	total	40, 60, 80	5.5, 5	(PH2)
Ne (135)	C, Al, Cu, Pb		0, 15, 30, 50,	1 '	RIKEN
N. (227)	C ALC II	total	80, 110	angles)	I DI D
Ne (337)	C, Al, Cu, U	ddx	30, 45, 60, 90	1 '	LBL Bevalac
77. (400)	0.0.0	total	5 10 20 20	angles)	TTD (A.C.
Ne (400)	C, Cu, Pb,	ddx, n/dΩ	1 ' ' '	9,6, 3.5, 3.5,	
N. ((00)	ISS wall	total	40, 60, 80	3, 3	(SB3)
Ne (600)	Li, C, CH ₂ , Al, Cu, Pb,	ddx, n/dΩ total	40, 60, 80	6, 5.5, 4, 3, 3	(PH2 and
	marsbar	totai	40, 60, 80	3	SB3)
Ar (95)	C, Al, Cu, Pb	ddy n/dO	0, 30, 50, 80,	10 (all	RIKEN
AI (33)	C, M, Cu, I c	total	110	angles)	ICICELY
Ar (400)	C, Cu, Pb	ddx, n/dΩ	5, 10, 20, 30,		HIMAC
711 (100)	0, 04, 10	total	40, 60, 80	3.5, 3, 3	(PH2 and
			1.5, 65, 55	3.5, 5, 5	SB3)
Ar (560)	C, Cu, Pb,	ddx, n/dΩ	5, 10, 20, 30,	10, 7, 3.5.	HIMAC
(/	marsbar	total	40, 60, 80	3.5, 3, 3	(PH2)
Fe (500)	Li, CH ₂ , Al	ddx, n/dΩ	5, 10, 20, 30,		HIMAC
,		total	40, 60, 80	3, 3	(PH2)
Kr (400)	Li, C, CH ₂ ,	ddx, n/dΩ	5, 10, 20, 30,		HIMAC
	Al, Cu, Pb	total	40, 60, 80	angles)	(PH2)

Thin target, heavy-lon induced reactions

Example: inclusive cross section

TABLE II. Summary of the beams and targets used in the experiment.

Т	Chickness (g/cm	²)
C target	Cu target	Pb target
1.80	4.47	2.27
9.00	13.4	9.08
1.80	4.47	2.27
3.60	4.47	4.54
0.720	1.34	1.70
1.08	1.79	2.27
	1.80 9.00 1.80 3.60 0.720	C target Cu target 1.80 4.47 9.00 13.4 1.80 4.47 3.60 4.47 0.720 1.34

Differential cross section

Thin target, heavy-lon induced reactions

@ 290 MeV/u @ 400 MeV/u @ 600 MeV/u

Example: inclusive cross section

TABLE II. Summary of the beams and targets used in the experiment.

Beam (MeV)	Thickness (g/cm ²)		
	C target	Cu target	Pb target
C at $E/A = 290$	1.80	4.47	2.27
C at $E/A = 400$	9.00	13.4	9.08
Ne at $E/A = 400$	1.80	4.47	2.27
Ne at $E/A = 600$	3.60	4.47	4.54
Ar at $E/A = 400$	0.720	1.34	1.70
Ar at $E/A = 560$	1.08	1.79	2.27

Angular distribution •••

@ 135 MeV/u

Thin target, heavy-lon induced reactions

FIG. 8. Angular distributions of neutron production cross sections integrated above 20 MeV.

