Outline Towards the test beam @ CNAO

- Repeating experiments in the literature: double differential inclusive cross section for the production of neutron in $\mathbf{p + 1 2} \mathrm{C}$ and ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ reactions
$>$ angle
> Incoming particle energy
- Raw estimation of the expected count rate, neutron energy spectrum and background from available simulation (5×10^{7} primaries)

Cristian Massimi \sim MC simulation: expected neutron flux in the 'detector'

Mauro Villa \sim and co are proposing a low energy neutron setup.. $<10 \mathrm{MeV}$ "LE"
michela.marafini \sim and co are proposing a high energy neutron setup.. $>10 \mathrm{MeV}$ " HE "

$\mathrm{C}(\mathrm{p}, \mathrm{xn})$ differential cross section (inclusive)

p @ 113 MeV

p @ 256 MeV

Angles: 7.5, 30, 60, 150 deg

MC simulations - particles from target ($5-\mathrm{mm}$ thick)

${ }^{1} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{4}$ @200MeV/u (newgeom) statistics: 5×10^{7} primaries

MC simulations - particles from target ($5-\mathrm{mm}$ thick)

${ }^{1} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{4}$ @200MeV/u (newgeom) statistics: 5×10^{7} primaries

Sofia Colombi ~ alice.manna@bo.infn.it \sim michela.marafini ~ Cristian Massimi ~ Mauro Villa \sim

MC simulations - particles from target ($5-\mathrm{mm}$ thick)

${ }^{1} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{4}$ @200MeV/u (newgeom) statistics: 5×10^{7} primaries

MC simulations - particles from target (5 -mm thick)

${ }^{1} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{4}$ @200MeV/u (newgeom) statistics: 5×10^{7} primaries

Taking an angle of ~ 30 degrees
Area $=45(25) \mathrm{cm}^{2}$
$\Delta \theta \sim 2$ deg.
@Distance = 100 cm

\mathbf{E}_{n}	TOF
1 MeV	72 ns
10 MeV	23 ns
50 MeV	10.6 ns
100 MeV	7.8 ns
200 MeV	5.9 ns

Sofia Colombi ~ alice.manna@bo.infn.it \sim michela.marafini \sim Cristian Massimi $\sim \underset{6}{\text { Mauro Villa } \sim ~}$

MC simulations - particles from target ($5-\mathrm{mm}$ thick)

${ }^{1} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{4}$ @200MeV/u (newgeom) statistics: 5×10^{7} primaries

MC simulations - particles from target ($5-\mathrm{mm}$ thick)

${ }^{1} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{4}$ @200MeV/u (newgeom) statistics: 5×10^{7} primaries

$12 C+12 C \rightarrow n+x$ differential cross section (inclusive)

PHYSICAL REVIEW C 64 (2001) 034607 and 054609
Sofia Colombi \vee alice.manna@bo.infn.it \vee michela.marafini \sim Cristian Massimi \sim Mauro Villa \sim

MC simulations - particles from target (5 -mm thick)

${ }^{1} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{4}$ @200MeV/u (newgeom) statistics: 5×10^{7} primaries

Area $=45(25) \mathrm{cm}^{2}$ $\Delta \theta \sim 2$ deg.

Sofia Colombi \sim alice.manna@bo.infn.it \vee michela.marafini \vee Cristian Massimi \vee Mauro Villa \sim

MC simulations - particles from target ($5-\mathrm{mm}$ thick)

${ }^{1} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{4}$ @200MeV/u (newgeom) statistics: 5×10^{7} primaries

MC simulations - particles from target (5 -mm thick)

${ }^{1} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{4}$ @200MeV/u (newgeom) statistics: 5×107 primaries

Taking an angle of ~ 30 degrees

Sofia Colombi \sim alice.manna@bo.infn.it \sim michela.marafini \sim Cristian Massimi \sim Mauro Villa \sim

MC simulations - particles from target ($5-\mathrm{mm}$ thick)

${ }^{1} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{4}$ @200MeV/u (newgeom) statistics: 5×10^{7} primaries

During the next test beam at CNAO It could be possible to repeat some measurements present in the literature about neutron production in $\mathrm{p}+{ }^{12} \mathrm{C}$ and ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ reactions:

- p + ${ }^{12} \mathrm{C}$ @ 30 and 60 (150?) deg. with energy of 113 and 256 MeV
- ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C} @ 30$ and 80 deg. with energy of 135 and $290 \mathrm{MeV} / \mathrm{u}$

These tests will provide the information about the feasibility of detecting neutrons with the present setup and with other detectors.

Dedicated simulations are required to be able to better prepare the test and estimate the required beam time.

Dedicated beam time (approximately ... h) is necessary to perform the test => 5 hours at 1 MHz ? :)

Possible Setup (HE)

Sofia Colombi \vee alice.manna@bo.infn.it \vee michela.marafini \sim Cristian Massimi \sim Mauro Villa \sim

Possible Setup (HE)

Sofia Colombi~ alice.manna@bo.infn.it ATTESO

Possible Setup (HE)

Possible Setup (HE)

Phoswich BGO

Possible Setup (LE)

Xylene/Toluene: NE213 / BC501

- Liquid scintillating detector optimized for n / γ discrimination; det size 3 in $\times 3$ in

Scintillation Properties	BC-501A	BC-501
Light Output, \%Anthracene	78	80
Wavelength of Maximum Emission, nm	425	425
Decay Time, short component, ns	3.2	3.3
Atomic Composition		
No. of H Atoms per cc $\left(\times 10^{22}\right)$	4.82	5.25
No. of C Atoms per cc $\left(\times 10^{22}\right)$	3.98	4.08
Ratio H:C Atoms	1.212	1.287
No. of Electrons per cc $\left(\times 10^{23}\right)$	2.87	2.97

Additional Properties of BC-501A

Mean Decay Times of first three components
(Ref. 2)

```
3.16, 32.3 \& 270 ns
```

Sofia Colombi ~ alice.manna@bo.infn.it \vee michela.marafini \sim Cristian Massimi ~ Mauro Villa \sim

Possible Setup (LE)

$0.1-14 \mathrm{MeV}$ Neutrons

In a past experiment with those detectors with Am-Be source

.1

120. Time inns

Sofia Colombi ~ alice.manna@bo.infn.it \sim michela.marafini \sim Cristian Massimi $\sim{ }_{20}^{\text {Mauro Villa } \sim ~}$

Possible Setup (LE)

BC-720

$\mathrm{ZnS}(\mathrm{Ag})$ phosphor embedded in a clear hydrogenous plastic and functions by means of the proton recoil interaction in the plastic, the proton being detected by the ZnS .

Detector size:
3" diameter

Scintillation Properties	
Decay Time, $\mu \mathrm{s}$	0.2
Wavelength of Max. Emission, nm	450

Possible Setup (LE)

Open Issues:

DAQ Channels

- $4 \mathrm{BGO}=>$ WDAQ Calorimeter (6 free channels $=>2$ free channels)
- 1 Veto. => WDAQ Margarita (8 free channels => 7 free channels)
and/or
- 2 BC-720 + 2 NE213 => WDAQ Calorimeter (6 free channels => 2 free channels)
- 1 Veto. => WDAQ Margarita (8 free channels => 7 free channels)

Trigger strategy

- Margarita in AND with OR of the neutron detectors => Luca.. is it possible?

The low energy measurement can be in parallel or in a different run => the number of different allowed triggers will define the strategy

- Define a run for efficiency measurements (and Delta calbes)
- Schedule a special run at high rate
- Define the distance from the detectors
- Build the Veto
- Keep testing the BGO at SBAI and low energy detectors at Bologna with cosmic rays and sources

Make a tour on MC simulation (Fluka):

- Can we put a box of the correct size in the FOOT simulation in order to study the expected background?

Backupslides

$\mathrm{C}(\mathrm{p}, \mathrm{xn})$ differential cross section (inclusive)

113 MeV

Fig. 3. Experimental differential cross sections for carbon compared with HETC calculation

256 MeV

(c) $\mathrm{C}(p, x n)$

597 MeV

Thin target, heavy-Ion induced reactions

Handbook on Secondary Particle Production And Transport by High-energy Heavy Ions

by Nakamura and Heilbronn

Beam ion and energy (MeV/nucleon)	Targets	Measured spectra	$\begin{aligned} & \hline \theta \\ & \text { (deg) } \end{aligned}$	$\begin{aligned} & \hline \text { Emin } \\ & (\mathrm{MeV}) \end{aligned}$	Facility
He (135)	$\mathrm{C}, \mathrm{Al}, \mathrm{Cu}, \mathrm{Pb}$	$\begin{aligned} & \begin{array}{l} \mathrm{ddx}, \mathrm{n} / \mathrm{d} \Omega \\ \text { total } \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} 0,15,30,50, \\ 80,110 \\ \hline \end{array}$	$\begin{aligned} & 10 \text { (all } \\ & \text { angles) } \\ & \hline \end{aligned}$	RIKEN
He (230)	Al, Cu	$\begin{aligned} & \mathrm{ddx}, \mathrm{n} / \mathrm{d} \Omega \\ & \text { total } \end{aligned}$	$\begin{aligned} & 5,10,20,30, \\ & 40,60,80 \end{aligned}$	$\begin{aligned} & 5.5,5,4,3.5,1 \\ & 3.5,3 \end{aligned}$	$\begin{aligned} & \text { HIMAC } \\ & \text { (PH2) } \end{aligned}$
C (135)	$\mathrm{C}, \mathrm{Al}, \mathrm{Cu}, \mathrm{Pb}$	$\begin{aligned} & \begin{array}{l} \mathrm{ddx}, \mathrm{n} / \mathrm{d} \Omega \\ \text { total } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 0,15,30,50, \\ & 80,110 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \text { (all } \\ & \text { angles) } \end{aligned}$	RIKEN
C (290)	$\begin{aligned} & \mathrm{C}, \mathrm{Cu}, \mathrm{~Pb}, \\ & \text { marsbar } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{ddx}, \mathrm{n} / \mathrm{d} \Omega \\ & \text { total } \end{aligned}\right.$	$\begin{aligned} & 5,10,20,30 \\ & 40,60,80 \end{aligned}$	$\left\lvert\, \begin{aligned} & 10,3,3,7,4, \\ & 3,3 \end{aligned}\right.$	$\begin{array}{\|l} \text { HIMAC } \\ \text { (SB3) } \end{array}$
C (400)	$\begin{aligned} & \mathrm{Li}, \mathrm{C}, \mathrm{CH}_{2}, \\ & \mathrm{Al}, \mathrm{Cu}, \mathrm{~Pb} \end{aligned}$	$\begin{aligned} & \text { ddx, } \mathrm{n} / \mathrm{d} \Omega \\ & \text { total } \end{aligned}$	$\begin{aligned} & 5,10,20,30, \\ & 40,60,80 \end{aligned}$	$\begin{aligned} & 8.5,5,3.5,3, \\ & 3,3 \end{aligned}$	$\begin{aligned} & \text { HIMAC } \\ & \text { (PH2 and } \\ & \text { SB3) } \\ & \hline \end{aligned}$
N (400)	C, Cu	$\begin{aligned} & \mathrm{ddx}, \mathrm{n} / \mathrm{d} \Omega \\ & \text { total } \end{aligned}$	$\begin{aligned} & 5,10,20,30, \\ & 40.60 .80 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 6,6,5,5.5 \\ 5.5,5 \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HIMAC } \\ & \text { (PH2) } \end{aligned}$
Ne (135)	C, $\mathrm{Al}, \mathrm{Cu}, \mathrm{Pb}$	$\begin{array}{\|l} \mathrm{ddx}, \mathrm{n} / \mathrm{d} \Omega \\ \text { total } \\ \hline \end{array}$	$\begin{aligned} & 0,15,30,50, \\ & 80,110 \end{aligned}$	$\left\{\begin{array}{l} 10 \text { (all } \\ \text { angles) } \\ \hline \end{array}\right.$	RIKEN
Ne (337)	C, Al, Cu, U	$\begin{array}{\|l} \hline \text { ddx } \\ \text { total } \end{array}$	30, 45, 60, 90	$\begin{aligned} & 12 \text { (all } \\ & \text { angles) } \end{aligned}$	LBL Bevalac
$\mathrm{Ne}(400)$	$\begin{aligned} & \mathrm{C}, \mathrm{Cu}, \mathrm{~Pb}, \\ & \text { ISS wall } \end{aligned}$	$\begin{aligned} & \text { ddx, } \mathrm{n} / \mathrm{d} \Omega \\ & \text { total } \end{aligned}$	$\begin{aligned} & 5,10,20,30, \\ & 40,60,80 \\ & \hline \end{aligned}$	$\begin{aligned} & 9,6,3.5,3.5, \\ & 3,3 \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { HIMAC } \\ \text { (SB3) } \end{array} \\ & \hline \end{aligned}$
Ne (600)	$\begin{aligned} & \mathrm{Li}, \mathrm{C}, \mathrm{CH}_{2}, \\ & \mathrm{Al}, \mathrm{Cu}, \mathrm{~Pb}, \\ & \text { marsbar } \end{aligned}$	$\begin{aligned} & \operatorname{ddx}, \mathrm{n} / \mathrm{d} \Omega \\ & \text { total } \end{aligned}$	$\begin{aligned} & 5,10,20,30, \\ & 40,60,80 \end{aligned}$	6, 5.5, 4, 3, 3	$\begin{aligned} & \text { HIMAC } \\ & \text { (PH2 and } \\ & \text { SB3) } \end{aligned}$
Ar (95)	$\mathrm{C}, \mathrm{Al}, \mathrm{Cu}, \mathrm{Pb}$	$\begin{aligned} & \operatorname{ddx}, \mathrm{n} / \mathrm{d} \Omega \\ & \text { total } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} 0,30,50,80, \\ 110 \end{array}$	$\begin{array}{\|l\|l} \hline 10 \text { (all } \\ \text { angles) } \end{array}$	RIKEN
Ar (400)	C, Cu, Pb	$\begin{aligned} & \operatorname{ddx}, \mathrm{n} / \mathrm{d} \Omega \\ & \text { total } \end{aligned}$	$\begin{aligned} & 5,10,20,30, \\ & 40,60,80 \end{aligned}$	$\left\{\begin{array}{l} 10,7,3.5, \\ 3.5,3,3 \end{array}\right.$	$\begin{aligned} & \hline \text { HIMAC } \\ & \text { (PH2 and } \\ & \text { SB3) } \\ & \hline \end{aligned}$
Ar (560)	$\begin{aligned} & \mathrm{C}, \mathrm{Cu}, \mathrm{~Pb}, \\ & \text { marsbar } \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{ddx}, \mathrm{n} / \mathrm{d} \Omega \\ \text { total } \\ \hline \end{array}$	$\begin{aligned} & 5,10,20,30 \\ & 40,60,80 \\ & \hline \end{aligned}$	$\left\{\begin{array}{l} 10,7,3.5, \\ 3.5,3,3 \end{array}\right.$	$\begin{aligned} & \hline \text { HIMAC } \\ & \text { (PH2) } \\ & \hline \end{aligned}$
Fe (500)	$\mathrm{Li}, \mathrm{CH}_{2}, \mathrm{Al}$	$\begin{aligned} & \begin{array}{l} \mathrm{ddx}, \mathrm{n} / \mathrm{d} \Omega \\ \text { total } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 5,10,20,30, \\ & 40,60,80 \\ & \hline \end{aligned}$	$\begin{aligned} & 12,11,7,4, \\ & 3,3 \end{aligned}$	$\begin{aligned} & \text { HIMAC } \\ & \text { (PH2) } \end{aligned}$
$\overline{\mathrm{Kr}}$ (400)	$\begin{aligned} & \mathrm{Li}, \mathrm{C}, \mathrm{CH}_{2}, \\ & \mathrm{Al}, \mathrm{Cu}, \mathrm{~Pb} \\ & \hline \end{aligned}$	$\begin{aligned} & \operatorname{ddx}, \mathrm{n} / \mathrm{d} \Omega \\ & \text { total } \end{aligned}$	$\begin{aligned} & 5,10,20,30 \\ & 40,60,80 \end{aligned}$	$\begin{aligned} & 20 \text { (all } \\ & \text { angles) } \end{aligned}$	$\begin{aligned} & \text { HIMAC } \\ & \text { (PH2) } \end{aligned}$

Thin target, heavy-Ion induced reactions

Example: inclusive cross section

TABLE II. Summary of the beams and targets used in the experiment.

Beam (MeV)	C target	Thickness $\left(\mathrm{g} / \mathrm{cm}^{2}\right)$ Cu target	Pb target
C at $E / A=290$	1.80	4.47	2.27
C at $E / A=400$	9.00	13.4	9.08
Ne at $E / A=400$	1.80	4.47	2.27
Ne at $E / A=600$	3.60	4.47	4.54
Ar at $E / A=400$	0.720	1.34	1.70
Ar at $E / A=560$	1.08	1.79	2.27

Thin target, heavy-lon induced reactions

Example: inclusive cross section

periment.

Beam (MeV)	C target	Thickness $\left(\mathrm{g} / \mathrm{cm}^{2}\right)$					
Cu target			$\quad \mathrm{Pb}$ target				
:---	:---:	:---:	:---:				
C at $E / A=290$	1.80	4.47	2.27				
C at $E / A=400$	9.00	13.4	9.08				
Ne at $E / A=400$	1.80	4.47	2.27				
Ne at $E / A=600$	3.60	4.47	4.54				
Ar at $E / A=400$	0.720	1.34	1.70				
Ar at $E / A=560$	1.08	1.79	2.27				

Angular distribution

Thin target, heavy-lon induced reactions

FIG. 8. Angular distributions of neutron production cross sections integrated above 20 MeV .

