

Neutrons @ FOOT

Cristian Massimi for INFN Bologna

Department of Physics and Astronomy

Outline

A close look up to the netron data in the literature

- Neutron production in THIN targets: cross sections, angular distribution,
 ... as input to MC
 - Proton-induced reactions: inclusive Vs exclusive cross section
 - Light-ion induced reactions
- Neutron production in THICK targets: comparison/benchmark with MC simulations
 - Proton- and Carbon-induced reactions on homogeneous target: measurement of secondary neutron yields
 - Proton- and Carbon-induced reactions on clinical phantom

Thin target, proton-induced reactions

Example: **exclusive** cross section data for ¹²C(p,pn)¹¹C

K. Matsushita et al., Nuclear Physics A 946 (2016) 104–116

Thin target, proton-induced reactions

Example: exclusive cross section data for $^{16}O(p,n)$, $^{16}O(p,2n)$, $^{16}O(p,3n)$

Data retrieved from the EXFOR database

Example: inclusive cross section data for C(p,xn) @ 113 MeV

Example: inclusive cross section data for C(p,xn) @ 256 MeV

Example: inclusive cross section data for C(p,xn) @ 597 MeV

Differential cross section

Thin target, proton-induced reactions (p,nx)

Example: inclusive cross section data for C(p,xn) @ 800 MeV

Differential cross section

Fig. 3. Experimental differential cross sections for carbon compared with HETC calculations.

Example: inclusive cross section data for O(p,xp) @ 113 MeV

Example: inclusive cross section data for O(p,xp) @ 256 MeV

Example: inclusive cross section data for O(p,xp) @ 597 MeV

(e) O(p,xn) (BeO Target)

Example: inclusive cross section data for O(p,xp) @ 800 MeV

Differential cross section

Thin target, proton-induced reactions (p,nx)

TOF technique

Target:

Be, B, C, N, Al, Fe, Pb, U

Inclusive cross sections

Energy:

113, 256, 597, 800 MeV

Angle:

7.5°, 30°, 60°, 150° LE & 30°, 60°, 120°,150° HE

NUCLEAR SCIENCE AND ENGINEERING: 102, 310-321 (1989) NUCLEAR SCIENCE AND ENGINEERING: 110, 289-298 (1992) NUCLEAR SCIENCE AND ENGINEERING: 112, 78-86 (1992) NUCLEAR SCIENCE AND ENGINEERING: 115, 1 - 1 2 (1993)

Thin target, proton-induced reactions (p,nx)

UNCERTAINTIES

Inclusive cross sections

	Factor/Correction	Magnitude	<u>Uncertainty</u>
	Time-Independent Background Time-Dependent Background	< 1% < 5%	5% 20%
_	Shadowbar Background Air Attenuation	< 5% < 2.2%	< 3% < 2.5%
	Efficiency Dead Time Charge Normalization	3 - 20% < 20% 1.0%	5 - 20% < 5% 5%

NUCLEAR SCIENCE AND ENGINEERING: 102, 310-321 (1989) NUCLEAR SCIENCE AND ENGINEERING: 110, 289-298 (1992) NUCLEAR SCIENCE AND ENGINEERING: 112, 78-86 (1992) NUCLEAR SCIENCE AND ENGINEERING: 115, 1 - 1 2 (1993)

Example: inclusive cross section

He 135	IVVV		
Linear Control	10	Projectile type and energy (MeV/nucleon)	arget and thickness (mm)
0		He (135)	C (1.0)
	Ì	C (135)	
15 (Ne (135)	
00000000000000000000000000000000000000	0.1	Ne (135) Ar (95) He (135) C (135) Ne (135) Ar (95) He (135) C (135) C (135) Ne (135) Ne (135) Ne (135) Ne (135) Ne (135) He (135)	
	V. 1	He (135)	Al (0.6)
		C (135)	
		Ne (135)	
	0.004	Ar (95)	
DIMENTAL DESCRIPTION	0.001	He (135)	Cu (0.3)
Ę		C (135)	
80 deg		Ne (135)	
MAN COMPANY	•	Ar (95)	
	10 ⁻⁵	Tic (133)	Pb (0.3)
- Composition (100)		C (135)	
		Ne (135)	
		Ar (95)	
10	_	He (135)	Polyethylene (1.0)

Example: inclusive cross section

Target and thickness (mm)	Projectile type and energy (MeV/nucleon)	10	000		(MD)
C (1.0)	He (135) C (135) Ne (135)	-1 sr -1]	10	O deg	HIC
Al (0.6)	Ar (95) He (135) C (135) Ne (135)	Secton [mb MeV ⁻¹	0.1	15 deg Odminioniminiminiminiminiminiminiminiminim	
Cu (0.3)	Ar (95) He (135) C (135)			50 deg	
Pb (0.3)	Ne (135) Ar (95) He (135) C (135)	Cross	10 ⁻⁵	80 deg	
Polyethylene (1.0)	Ne (135) Ar (95) He (135)			110 deg	

Angular distribution

FIG. 8. Angular distributions of neutron production cross sections integrated above 20 MeV.

@ 290 MeV/u@ 400 MeV/u@ 600 MeV/u

Example: inclusive cross section

TABLE II. Summary of the beams and targets used in the experiment.

Beam	Г	Thickness (g/cm	(2)
(MeV)	C target	Cu target	Pb target
C at $E/A = 290$	1.80	4.47	2.27
C at $E/A = 400$	9.00	13.4	9.08
Ne at $E/A = 400$	1.80	4.47	2.27
Ne at $E/A = 600$	3.60	4.47	4.54
Ar at $E/A = 400$	0.720	1.34	1.70
Ar at $E/A = 560$	1.08	1.79	2.27

Differential cross section

@ 290 MeV/u@ 400 MeV/u@ 600 MeV/u

Example: inclusive cross section

TABLE II. Summary of the beams and targets used in the experiment.

Beam	7	Thickness (g/cm	(2)
(MeV)	C target	Cu target	Pb target
C at $E/A = 290$	1.80	4.47	2.27
C at $E/A = 400$	9.00	13.4	9.08
Ne at $E/A = 400$	1.80	4.47	2.27
Ne at $E/A = 600$	3.60	4.47	4.54
Ar at $E/A = 400$	0.720	1.34	1.70
Ar at $E/A = 560$	1.08	1.79	2.27

Example: inclusive cross section

@	230	MeV/u
@	400	MeV/u
@	500	MeV/u
@	600	MeV/u

Beam (Energy) (MeV/nucleon)	Target	Thickness (g/cm ²)
Не (230)	Al Cu	5.40 (2.0 cm) 5.38 (0.6 cm)
N (400)	C Cu	1.78 (1.0 cm) 2.69 (0.3 cm)
Si (600)	C Cu Pb	1.80 (1.0 cm) 3.58 (0.4 cm) 4.54 (0.4 cm)
Fe (500)	Li CH ₂ Al	0.903 (1.7 cm) 0.957 (1.05 cm) 1.285 (0.476 cm)
Kr (400)	Li C CH ₂ Al Cu Pb	0.47 (0.885 cm) 0.55 (0.3 cm) 0.46 (0.5 cm) 0.54 (0.2 cm) 0.90 (0.1 cm) 1.02 (0.09 cm)
Xe (400)	Li C CH ₂ Al Cu Pb	0.48 (0.9 cm) 0.27 (0.15 cm) 0.20 (0.22 cm) 0.26 (0.095 cm) 0.45 (0.05 cm) 0.57 (0.05 cm)

Fig. 5. Double-differential spectra from 400 MeV/nucleon N interacting in a C target. The spectra at each laboratory angle are offset by the indicated factors of 10. The lines come from a moving-source fit described in the text.

Handbook on Secondary Particle Production And Transport by High-energy Heavy Ions

by Nakamura and Heilbronn

Beam ion and energy	Targets	Measured spectra	θ (deg)	Emin (MeV)	Facility
(MeV/nucleon)		spectra	(deg)	(IVIC V)	
He (135)	C, Al, Cu, Pb	•	0, 15, 30, 50,	10 (all	RIKEN
		total	80, 110	angles)	
He (230)	'	ddx , $n/d\Omega$		5.5, 5, 4, 3.5,	
		total	40, 60, 80	3.5, 3	(PH2)
C (135)	C, Al, Cu, Pb	•	0, 15, 30, 50,	10 (all	RIKEN
		total	80, 110	angles)	
C (290)	C, Cu, Pb,	ddx, n/dΩ	15 10 20 30	10, 3, 3, 7, 4,	HIMAC
0 (250)	marsbar	total	40, 60, 80	3, 3	(SB3)
C (400)	Li, C, CH ₂ ,	ddx, n/dΩ		8.5, 5, 3.5, 3,	`
	Al, Cu, Pb	total	40, 60, 80	3, 3	(PH2 and
					SB3)
N (400)	C, Cu	ddx, n/dΩ	5, 10, 20, 30,		HIMAC
		total	40, 60, 80	5.5, 5	(PH2)
Ne (135)	C, Al, Cu, Pb	1 '	0, 15, 30, 50,	1 `	RIKEN
		total	80, 110	angles)	
Ne (337)	C, Al, Cu, U	ddx	30, 45, 60, 90	'	LBL Bevala
		total	<u> </u>	angles)	
Ne (400)	C, Cu, Pb,	ddx, n/dΩ		9,6, 3.5, 3.5,	
	ISS wall	total	40, 60, 80	3, 3	(SB3)
Ne (600)	Li, C, CH_2 ,	ddx, n/dΩ	1 ' ' '	6, 5.5, 4, 3, 3	1
	Al, Cu, Pb,	total	40, 60, 80	3	(PH2 and
	marsbar				SB3)
Ar (95)	C, Al, Cu, Pb		0, 30, 50, 80,	'	RIKEN
		total	110	angles)	
Ar (400)	C, Cu, Pb	ddx, n/dΩ	5, 10, 20, 30,	1	HIMAC
	1	total	40, 60, 80	3.5, 3, 3	(PH2 and
			<u> </u>		SB3)
Ar (560)	C, Cu, Pb,	ddx, n/dΩ	5, 10, 20, 30,		HIMAC
	marsbar	total	40, 60, 80	3.5, 3, 3	(PH2)
Fe (500)	Li, CH ₂ , Al	ddx, n/dΩ	5, 10, 20, 30,	1 '	HIMAC
	<u> </u>	total	40, 60, 80	3, 3	(PH2)
Kr (400)	Li, C, CH ₂ ,	ddx, n/dΩ	5, 10, 20, 30,	1 '	HIMAC
	Al, Cu, Pb	total	40, 60, 80	angles)	(PH2)

TOF technique

Target:

Li, C, Al, Cu, Pb, U and CH₂

Inclusive cross sections

Beams:

He, C, N, Ne, Ar, Si, Fe, Kr, Xe

Energy:

135, 230, 290, 400, 500, 560, 600 MeV/u

Handbook on Secondary Particle Production And Transport by Highenergy Heavy Ions by Nakamura and Heilbronn

NUCLEAR SCIENCE AND ENGINEERING 157 (2007) 142

PHYSICAL REVIEW C **64** (2001) 054609

PHYSICAL REVIEW C **64** (2001) 034607

TOF technique

 C

and CH₂

Inclusive cross sections

Beams:

He, C, N

Energy:

135 290, 400,

MeV/u

Handbook on Secondary Particle Production And Transport by Highenergy Heavy Ions by Nakamura and Heilbronn

NUCLEAR SCIENCE AND ENGINEERING **157** (2007) 142

PHYSICAL REVIEW C **64** (2001) 054609

PHYSICAL REVIEW C **64** (2001) 034607

Homogeneous THIK target, charged-particle induced reactions

Handbook on Secondary Particle Production And Transport by High-energy Heavy Ions

by Nakamura and Heilbronn

Beam ion and energy (MeV/nucleon)	Targets (cm)	Measured spectra	θ (deg)	Emin (MeV)	Facility
He (100)	C (5.0) Al (4.0) Cu (1.5) Pb (1.5)	TTY n/dΩ total	0, 7.5, 15, 30, 60, 90	5.5, 5, 4, 3.5, 3.5, 3	HIMAC
He (155)	Al (8.26)	TTY n/dΩ total	10, 30, 45, 60, 90, 125, 160	10, 3, 3, 7, 4, 3, 3	NSCL
He (160)	Pb (3.937)	TTY Total	0, 45, 90, 120, 150	10, 3, 13, 13, 13	SREL
He (177.5)	C (14.73) H ₂ O (22.86) Steel (4.445) Pb (3.937)	TTY Total	0, 6, 15, 30, 45, 60, 90, 120, 135, 150	3, 10, 11, 11, 3, 10, 3, 13, 3, 13	SREL

Beam ion and energy	Targets (cm)	i .	θ	Emin	Facility
(MeV/nucleon)		spectra	(deg)	(MeV)	
He (180)	C (16.0)	TTY	0, 7.5, 15, 30,	17, 11, 5.5,	НІМАС
	Al (12.0)	n/dΩ	60, 90	6.5, 3.5, 3.5	
	Cu (4.5)	total			
	Pb (5.0)				
C (100)	C (2.0)	TTY	0, 7.5, 15, 30,	4, 4, 3.5, 3.5,	HIMAC
	Al (1.0)	n/dΩ	60, 90	3, 3	
	Cu (0.5)	total			
- 4>	Pb (0.5)				
C (155)	Al (8.26)	TTY	10, 30, 45, 60,	10, 3, 3, 7, 4,	NSCL
		n/dΩ	90, 125, 160	3, 3	
5 (100)	÷ (5 h)	total	2.55.15.22		
C (180)	C (6.0)	TTY	0, 7.5, 15, 30,	5.5, 5.5, 3.5,	HIMAC
	Al (4.0)	n/dΩ	60, 90	2.5, 3, 2.5	
	Cu (1.5)	total			
G (400)	Pb (1.5)		0.75.15.00	0.5.5.0.5.0	TTD 64 G
C (400)	C (20.0)	TTY	0, 7.5, 15, 30,	8.5, 5, 3.5, 3,	HIMAC
	Al (15.0)	n/dΩ	60, 90	3, 3	
	Cu (5.0)	total			
Ne (100)	Pb (5.0)	TTY	0.75.15.20	((5 5 5	HIMAC
Ne (100)	C (1.0) Al (1.0)	n/dΩ	0, 7.5, 15, 30, 60, 90	6, 6, 5, 5.5, 5.5, 5	HIMAC
	Cu (0.5)	total	60, 90	3.5, 5	
	Pb (0.5)	totai			
Ne (180)	C (4.0)	TTY	0, 7.5, 15, 30,	9,6, 3.5, 3.5,	HIMAC
140 (180)	Al (3.0)	n/dΩ	60, 90	3, 3	HIMAC
	Cu (1.0)	total	00, 90	3, 3	
	Pb (1.0)	totai			
Ne (400)	C(11.0)	TTY	0, 7.5, 15, 30,	6, 5.5, 4, 3, 3,	HIMAC
110 (400)	Al (9.0)	n/dΩ	60, 90	3	111111111
	Cu (3.0)	total	00,70	_	
	Pb (3.0)	LOCAL			
Si (800)	C (23.0)	TTY	0, 7.5, 15, 30,	11, 8, 8, 4,	HIMAC
. (555)	Cu (6.5)	n/dΩ	60, 90	3.5, 3.5	
1	_= (5.5)	total	,	,	
Ar (400)	C (7.0)	TTY	0, 7.5, 15, 30,	10, 7, 3.5,	HIMAC
(·)	Al (5.5)	n/dΩ	60, 90	3.5, 3, 3	
	Cu (2.0)	total	,	,-,-	
	Pb (2.0)			l	

Homogeneous THIK target, charged-particle induced reactions

IAEA Benchmark of Spallation Models available online: https://wwwnds.iaea.org/spallations/

Istituto Nazionale di Fisica Nucleare

Proj.	Targ.	E (MeV)	Reference	Lab.	EXFOR	Figure
n	^{nat} Fe	65	E.L.Hjort et al., Phys.Rev.C.53(1996)237	UC Davis, USA	13522	[fig]
р	^{nat} Fe	800	W.B.Amian et al., Nucl.Sci.Eng.112(1992)78	LANL, USA	C0170	[fig]
р	^{nat} Fe	800	S.Leray et al., Phys.Rev.C65(2002)044621	Saturn, France	00977	[fig]
р	^{nat} Fe	1200	S.Leray et al., Phys.Rev.C65(2002)044621	Saturn, France	00977	[fig]
р	^{nat} Fe	1600	S.Leray et al., Phys.Rev.C65(2002)044621	Saturn, France	00977	[fig]
р	^{nat} Fe	3000	K.Ishibashi et al., J.Nucl.Sci.Tech.34(1997)529	KEK, Japan	E1762	[fig]
р	^{nat} Pb	256	M.M.Meier et al., Nucl.Sci.Eng.110(1992)289	LANL, USA	C0168	[fig]
р	natpb	800	W.B.Amian et al., Nucl.Sci.Eng.112(1992)78	LANL, USA	C0170	[fig]
р	natpb	800	S.Leray et al., Phys.Rev.C65(2002)044621	Saturn, France	00977	[fig]
р	natpb	1200	S.Leray et al., Phys.Rev.C65(2002)044621	Saturn, France	00977	[fig]
р	natPb	1600	S.Leray et al., Phys.Rev.C65(2002)044621	Saturn, France	00977	[fig]
р	natpb	3000	K.Ishibashi et al., J.Nucl.Sci.Tech.34(1997)529	KEK, Japan	E1762	[fig]
р	²⁰⁸ Pb	63	A.Guertin et al., Eur.Phys.J.A23(2005)49	Louvain, Belgium	01146	[fig]

THICK target: non homogenous target (clinical phantom)

FWHM x (mm)	FWHM y (mm)
9.46	9.69
7.66	7.80
5.51	4.41
4.23	3.72
	9.46 7.66 5.51

BW3 phantom: 30 cm x 30 cm x 15 cm (thick enough to stop the proton and carbon-ion beams)

Phys. Med. Biol. **65** (2020) 155002

THICK target: non homogenous target (clinical phantom)

	FWHM x (mm)	FWHM y (mm)
Protons, 155 MeV u ⁻¹	9.46	9.69
Protons, 200.28 $MeV u^{-1}$	7.66	7.80
Carbon ions, 292.96 MeV u^{-1}	5 . 51	4.41
Carbon ions, $387.78 \text{ MeV u}^{-1}$	4.23	3.72

BW3 phantom: 30 cm x 30 cm x 15 cm (thick enough to stop the proton and carbon-ion beams)

THICK target: non homogenous target (clinical phantom)

Figure 8. Comparison between simulated and measured EJ-309 pulse height distributions, for 293 MeV u⁻¹ carbon-ion irradiation, at measurement locations of 15° , 45° and 90° (left to right) with respect to the beam axis.

Figure 9. Comparison between simulated and measured EJ-309 pulse height distributions, for 387.78 MeV $\rm u^{-1}$ carbon-ion irradiation, at measurement locations of 15°, 45° and 90° (left to right) with respect to the beam axis.

Conclusions

 Large number of experimental data sets but often not made available on nuclear reaction databases.

 A few exclusive cross section measurements on p + ¹²C and + ¹⁶O, respectively. Very challenging experiments and most valuable data(?)

 Inclusive differential cross sections on thin targets for p + ¹²C and ¹⁶O available at several angles and energies.

 No neutron data for the ¹²C + ¹⁶O reaction. Few neutron data for ¹²C + ¹²C.

 Experiments on thick targets, show the need for more accurate neutron data. Worth investigating feasibility @ FOOT?

 $d^2\sigma/dEd\Omega$ could be improved and perhaps crosschecked?

Similar experiments could be performed @ FOOT?

Cristian Massimi

Department of Physics and Astronomy

cristian.massimi@unibo.it

www.unibo.it

backup

- Handbook on Secondary Particle Production And Transport by Highenergy Heavy Ions, by Nakamura and Heilbronn
- IAEA Benchmark of Spallation Models available online: https://www-nds.iaea.org/spallations/

