
GSI 2019 Analysis: FLUKA Simulation for Efficiency Determination

Milano

In view of data analysis for cross section measurements as a funcion of Z

- As recently discussed we aim to analyze GSI data from 2019 campaign to extract total cross sections (and/or energy-integrated $d\sigma/d\Omega$) for the inclusive production of all different Z
- For this purpose we need to evaluate by MC acceptance, efficiency (including trigger) for all interesting cases

Efficiency Evalutation

Too much resources- and time-consuming to evaluate acceptance/efficiency starting from the primary beam simulation.

It's better to make use of an ad-hoc procedure

Ad Hoc Strategy

- Individual (untriggered) simulations for each Z, to be used as primary originating from a random x,y,z within the target volume Flat distribution in:
- solid angle within TW acceptance
- selected Z-dependent energy range (limits checked by MC):

Z=1 (p)	min = 0.0	max = 1199.0 (Me	eV/u)
Z=2 (⁴ He)	min = 0.0	max = 695.5	
Z=3 (⁷ Li)	min = 131.0	max = 508.5	Hypoth there is differen single 2 represe should Is this c
Z=4 (⁹ Be)	min = 184.5	111dX – JZJ.U	
Z=5 (¹¹ B)	min = 218.0	max = 453.5 s	
Z=6 (¹² C)	min = 290.5	max = 4350	
Z=7 (¹⁴ N)	min = 318.0	max = 413.5	
Z=8 (¹⁶ O)	min = 352.0	max = 392.5	

Hypothesis: there is no need to have different isotopes within a single Z. The most representative/abundant one should be enough.

Is this correct?