

Update Pisa group

News

- Roberto Zarrella graduated with laude!!
- Borsa di studio for 6 months with Pisa group
- We would like to try to send a small paper (NIMA? JINST? Technical note?) about the CNAO+GSI data taking of the TW and STC data (for whole FOOT collaboration ? Whatever is preferred...).
 - Data are not great, but we believe it's still better to have a small publication rather than nothing at all
 - A lot of work went into getting the full TW system to work
 - \rightarrow will show proposal of content today
- IEEE abstract sent to Editorial Board
- New student, will work with Matteo
- Lab work continues not right now, but hopefully soon

Paper content (1)

- Introduction:
 - Background FOOT
 - Motivation/what's new:
 - First time we would publish something with the full detector (past work was only with 2 or 4 single bars, now 80 bars)
 - First time TOF was measured with STC and TW together, all clocks synchronized, new software structure, etc. (past work didn't include STC)
 - First time system worked with oxygen

Materials and methods

- ◆ TOF Wall system with 8o bars, STC ("full-scale △E-TOF prototype" ?)
- Data takings CNAO and GSI: include a scheme (?)
- Data processing
- Calibration: by matching data of known projectiles with MC (position dependent, Front and Rear separately)
- 1 fragmentation measurement

Paper content (2)

Results:

Validation of the energy and time calibration procedure: show for one example (oxygen 400 MeV/u without target) that the mean energy and mean TOF measured in bars in data is matching with MC (plots made summing up all well-calibrated positions (TOF-Wall cross pattern)

Paper content (3)

Results:

Time resolution (energy resolution was shown in previous papers)

Particle	E_{beam}	μ_{TOF}	σ_{TOF}
	$[{\rm MeV}/{\rm u}]$	[ns]	[ps]
р	60	19.934 ± 0.003	250 ± 2
$^{12}\mathrm{C}$	115	19.2683 ± 0.0004	53.1 ± 0.3
$^{12}\mathrm{C}$	260	18.021 ± 0.001	65.4 ± 0.5
$^{12}\mathrm{C}$	400	17.732 ± 0.001	72.7 ± 0.5
^{16}O	400	10.942 ± 0.003	71.6 ± 0.3

Paper content (3)

Results:

- Data of fragmentation run, including:
 - All positions with Front and Rear well calibrated positions (cross pattern) (about 40.000 entries)
 - All positions where either Front or Rear was well calibrated (another 3000)
 - All other positions, that were not directly irradiated (outside cross pattern), but were part of bars that were calibrated in the center → not so accurate, but to increase statistics (another 4000 entries)

- Or Zspectrum? To be decided...
- Other draw options?
- Try to include protons? (try lower energy cut)

Paper content (4)

Conclusion

- Full TW +STC system tested
 - Data processing, calibration

We would like to send an abstract to IEEE, abstract+2 page summary sent to EB