Simulation of ⁴He events @ 700 MeV/u

Milano group

Motivations (see slides from Meeting of March 4th)

In view of the call of GSI BioPac for 2021/2022 beam time, FOOT we are reiterating and improving the proposal already presented in 2017.

One of the major points is to apply for ion beams which are difficult to obtain outside GSI: in particular ⁴He and ¹⁶O.

The case of ⁴He 0.7 GeV/u is considered for space radioprotection

Using ⁴He projectiles, the only final state channels (excluding target fragmentation) are:

Proposed Geometry

Compensation for bending

Transv. view

Simulated Data (FLUKA pro Version 2020.0)

/gpfs_data/local/foot/Simulation/newgeom_v1.0/HE_MC

4He_C_270_1.root (5 10⁶ primaries, 46689 ev.)

4He_C_200_2.root (5 10⁶ primaries, 46178 ev.)

As usual, a «software trigger» in implemented to write **only** events in which there was at least one inelastic interaction of primary in target

A few very preliminary plots: multiplicity per event at TW

Multiplicity of charged particles arriving at TW

Multiplicity per event at TW - 2

(Total) Energy of secondaries from projectile fragm. arriving at TW

(Total) Energy of secondaries from projectile fragm. arriving at TW - 2

(Total) Energy of secondaries from projectile fragm.: neutrons arriving at TW

(Total) Energy of secondaries from projectile fragm.: neutrons arriving at TW

Arrival time at TW of neutrons

Arrival time at TW of neutrons

