Systematic study on the <u>number of isotopes reconstructed</u>, <u>mass</u> and <u>its</u> resolution, and <u>cross section evaluation</u> depending on

- Momentum
 - TOF
- Kinetic energy

Sofia Colombi, Francesco Tommasino

3rd Analysis Meeting

1 April 2020

Introduction

- Simulation:
- $> {}^{16}O$ 200 MeV/u on C_2H_4
- $\geq 2.5 \times 10^8$ primaries (2880551 interactions -> 1.15 %)
- ➤ Geometry V15

Selection:

- > Cross all the detectors
- > Tracks originated in the target
- \triangleright 5.5 < Z reco < 6.5
- \rightarrow Fit $\chi^2 < 5$

$$A_1 = \frac{p}{U\beta\gamma c}$$

$$A_{1} = \frac{\mathbf{p}}{U\beta\gamma c}$$

$$A_{2} = \frac{\mathbf{E}_{k}}{Uc^{2}(1-\gamma)}$$

$$A_{3} = \frac{\mathbf{p}c^{2} - \mathbf{E}_{k}^{2}}{2Uc^{2}\mathbf{E}_{k}}$$

$$A_3 = \frac{\mathbf{p}c^2 - \mathbf{E_k}^2}{2Uc^2\mathbf{E_k}}$$

- 2 parameters fixed and 1 changed in from the ideal to the worse scenario:
 - > 40 ps < TOF on carbon < 100 ps
 - > 2.5 % < momentum resolution < 5.5 %
 - ➤ 1 % < kinetic energy resolution < 2.8 %

ΔEkin/Ekin	1.5%
Δр/р	3.7%

TOF on C	70 ps
ΔEkin/Ekin	1.5 %

TOF on C	70 ps
Δρ/ρ	3.7 %

Mass (wrt real mass)

In most of the cases there is a small shift (\approx 1%) 'on the right' of the real mass

Mass resolution

- Mass resolution get worse with increasing the resolution on p, Ekin, TOF
- Fit for Δ Ekin/Ekin=1% needs improvement

Events (wrt MC events)

- Difference wrt MC events of $\approx 1\%$ up to 7% for the isotopes with a good statistics (C11, C12, C13)
- Increasing the TOF has a strong impact on the analysis and leads to large deviations compared to MC, especially for low-statistics isotopes

Cross section (wrt MC cross section)

For the isotopes with a good statistics the cross section value is always underestimated of about 5 %

Systematic shift in the Ekin recostruction

Conclusions

- C9, C10, C14 has a low statistic, so maybe the systematic study could be focused only on C11, C12, C13
- The TOF is the most sensible parameter in terms of isotope identification
- Cross section measurement shows a behaviour already observed. Maybe it could be related to the fact that we always have a 5% shift in the peak position, but need to be investigated more and understand better

Next steps

- Switch to higher beam energy simulations: ¹⁶O 400 MeV/u and 700 MeV/u
- Start the study about neutrons

BACKUP SLIDES

Charge identification

The Z determination is obtained by the mean energy loss of charged particle deposited in the plastic scintillator (SCN) and by the TOF measurement (Start Counter – SCN)

$$-\frac{dE}{dx} = \frac{\rho \cdot Z}{A} \frac{4\pi N_A m_e c^2}{M_U} \left(\frac{e^2}{4\pi \epsilon_0 m_e c^2}\right)^2 \frac{z^2}{\beta^2} \left[\ln\left(\frac{2m_e c^2 \beta^2}{I \cdot (1 - \beta^2)}\right) - \beta^2\right]$$
 Charge and velocity of the fragment

(divided by c)

Wrong charge assignment < 1%

Fluka simulation

 16 O (200 MeV/u) → 16 C₂H₄

Mass identification

Combination of reconstructed quantities:

Momentum (magnetic spectrometer)
ToF (scintillator)
Kinetic energy (calorimeter)

$$A_1 = \frac{p}{U\beta\gamma c}$$

Fluka simulation $^{16}{\rm O}~(200~{\rm MeV/u}) \Rightarrow {\rm C_2H_4}$ (Example of $^{12}{\rm C}$)

Best determination of A throught:

- Standard χ^2 fit
- Augmented Lagrangian Method (ALM)

- Peak position centered around the expected values
- Resolution: $4\% (^{16}O) 6\% (^{1}H)$

Mass reconstruction and fit

TOF (
$$\beta$$
) – TRACKER (p)
$$A_1 = \frac{m}{U} = \frac{p}{U \beta \gamma}$$

TOF (
$$\beta$$
)– CALO (E_{kin})
$$A_2 = \frac{m}{U} = \frac{E_{kin}}{U(\gamma - 1)}$$

TRACKER (p) – CALO (E_{kin})
$$A_3 = \frac{m}{U} = \frac{p^2 - E_{kin}^2}{2E_{kin}}$$

Standard χ² Fit

- Taking into account the correlation between A_1 , A_2 and A_3 (reconstructed quantities)
- Minimization method based on a function *f* defined by:

$$f = \left(\frac{(tof_{reco} - t)}{\sigma tof_{reco}}\right)^{2} + \left(\frac{(p_{reco} - p)}{\sigma p_{reco}}\right)^{2} + \left(\frac{(E_{kin,reco} - E_{kin})}{\sigma E_{kin,reco}}\right)^{2} + (A_{1} - A \quad A_{2} - A \quad A_{3} - A)\begin{pmatrix}C_{00} & C_{01} & C_{02} \\ C_{10} & C_{11} & C_{12} \\ C_{20} & C_{21} & C_{22}\end{pmatrix}\begin{pmatrix}A_{1} - A \\ A_{2} - A \end{pmatrix}$$

$$C = (A \cdot A^T)^{-1}$$
 Correlation matrix

$$A = \begin{pmatrix} \frac{\partial A_1}{\partial t} dt & \frac{\partial A_1}{\partial p} dp & 0 \\ \frac{\partial A_2}{\partial t} dt & 0 & \frac{\partial A_2}{\partial E_{kin}} dE_{kin} \\ 0 & \frac{\partial A_3}{\partial p} dp & \frac{\partial A_3}{\partial E_{kin}} dE_{kin} \end{pmatrix}$$

Machinery for the cross section evaluation of C fragments

Differential cross sections (E_{kin} , θ) of each produced fragment

$$\frac{d\sigma_f}{dE_{kin}} = \frac{(Y_f - Bkg_f)^U}{N_{Prim} \cdot N_t \cdot \Omega_{Ekin} \epsilon_f}$$

- *f* -> fragment: all Carbon Isotopes
- N_{prim} -> number of primary events
- N_t -> number of scattered center per unit area
- ε_f -> efficiency
- Ω_{Ekin} -> phase space

- Bkg -> Background : events counted with A=12, but generated with A \neq 12 (\approx 11%)
- U -> Unfolding: the reconstructed distribution must be corrected from the experimental effects
 - $(Y_f Bkg_f)^u$ Unfolded (Yield Bkg) of the fragment