

Alma Mater Studiorum · Università di Bologna

Dipartimento di Fisica e Astronomia - DIFA

AIM Live Meeting

Classification of Prostate Tumours from NMR Images Texture Analysis: a Machine Learning Approach

Carlo Mengucci^{1,2} Maurizio Marrale³ Daniel Remondini¹

February 3, 2020

¹Department of Physics and Astronomy, UNIBO

²Department of Agricultural and Food Sciences, UNIBO

³Department of Physics and Chemistry, UNIPA

A new DataFrame with 92 patients, divided into 3 classes, was extracted from the original T2 data:

- Control Tissues: 46
- Lesion Tissues: 26
- Lesion with Tumor Tissues: 20

Objective: evaluate predictive power of the 290 features resulting from the intersection of features amongst patients. All features have been extracted from ROI in images by the **MazDa** software.

Challenges: Not so many images, classes have different size in population, many features.

Explorative Framework

What if we know nothing about the features?

Explorative Framework

Results

• Scaler: Robust Scaler

• LV Embredding: 15 Components Linear Kernel PCA

• Classifier: Random Forest

Crossvalidated Performance: Average accuracy ~ 0.68

Single Run LOO Confusion Matrix:

	Control	Lesion	Lesion+Tumor
Control	38	5	3
Lesion	9	5	12
Lesion+Tumor	4	4	12

Struggles to discriminate between Lesion/Lesion+Tumour

Explorative Framework

Best 3d Projection and Feature Selection with Loadings Analysis

- PC1:S(4,4)DifEntrp, S(4,4)SumEntrp, S(3,-3)SumVarnc, S(4,0)AngScMom, S(0,5)SumVarnc
- PC7:S(0,5)SumAverg, S(3,0)SumAverg, S(0,5)AngScMom, S(4,-4)AngScMom, Perc.10%
- PC9: Perc.01%, S(5,-5)DifVarnc, S(3,-3)AngScMom, S(4,4)InvDfMom, S(5,-5)AngScMom

Adding Knowledge About Features

- Features derived from ROIs are Histogram-based, Gradient-based, Run length matrix-based, Co-occurence matrix-based, Auto regressive model-based, Wavelet parameter-based
- Collinearity is expected
- Some kind of penalty model may help

Adding Knowledge About Features

Best Solution: LR with EN mixed penalty

- L1-L2 mixed Elastic Net penalization gives best balance between induced sparsity (feature selection) and retained information for predictive performances
- Best model for prediction and most representative features for each class are simulaneously found
- Uninformative features are pruned
- Cross Validated predictive performance: ~ 0.72 average accuracy!

	Control	Lesion	Lesion+Tumor
Control	39	4	3
Lesion	6	8	12
Lesion+Tumor	2	8	10

Adding Knowledge About Features

LR Results

- Controls Features: Mean, Skewness, Perc.01%, Perc.10%, S(1,0) AngScMom, S(1,0) SumAverg, S(0,1) SumAverg, S(1,1) SumAverg, S(1,-1) SumAverg, S(2,0) SumAverg, S(0,2) SumAverg, S(2,-2) SumAverg, S(3,0) SumAverg, S(3,3) SumVarnc, S(5,0) Inv DfMom, S(5,0) SumAverg, 135drLngREmph
- Lesion Features: Skewness, S(4,-4)SumVarnc, S(5,0)AngScMom, S(0,5)InvDfMom, S(5,-5)Contrast, Teta4, WavEnLLs-1, WavEnLLs-2
- Lesion+Tumour Features: Perc.01%, Perc.10%, S(3,-3)SumVarnc, S(4,-4)AngScMom, S(4,-4)Contrast, S(5,5)AngScMom, S(5,5)DifVarnc,S(5,-5)Contrast, S(5,-5)SumVarnc, S(5,-5)DifVarnc, GrSkewness, WavEnLLs-1, WavEnHHs-1, WavEnLLs-2

Conclusions and Future Developments

- Considering the difficulty of the task, this framework seems promising
- More images will obviously improve performance stability, especially in the Lesion gray zone
- A deeper knowledge of how features are extracted with MazDa will help to find a physical meaning to feature selection
- A more efficient random search using classifiers parameters a priori distributions is on the way

Thanks to the research group

