Split Cooper pair box qubit: the "artificial
atom” with two control knobs
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The modern Cooper pair box: Circuit QED

S. Haroche, JM Raimond, M. Brune

Inspired from cavity QED N

Cooper Pair Box ‘atom’ in resonator
(Schoelkopf group , Yale, 2004)

Transmon Cooper pair box

E,>>E. insensitive to charge noise
Koch et al., Yale, 2007

Using the cavity
to measure
the state
of the "atom"

State dependent polarizability of ‘atom’ pulls the cavity frequency



The artificial atom
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Superconducting Circuits for Quantum
Information: An Outlook

M. H. Devoret™? and R. ]. Schoelkopf*

Superconducting Qubit
Evolutionary Phylogeny
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The performance of superconduding qubits has improved by several orders of magnitude in the past PHASE FLUX
decade. These circuits benefit from the robustness of superconductivity and the Josephson effect, and QUBIT QUBIT
at present they have not encountered any hard physical limits. However, building an error-corrected
information processor with many such qubits will require solving spedfic architecture problems that \ TRANSMON
constitute a new field of research. For the first time, physicists will have to master quantum error QUBIT
correction to design and operate complex active systems that are dissipative in nature, yet remain FLUXONIUM

coherent indefinitely. We offer a view on some directions for the field and speculate on its future. QuBIT
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Macroscopic Quantum Tunneling in d-Wave YBa,Cu;0,_5 Josephson Junctions Napa /

T. Bauch,' F. Lombardi,' F. Tafuri,” A. Barone,” G. Rotoli,* P. Delsing.] and T. Claeson'
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Quantum - Josephson
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Quantum Dynamics of a d-Wave
Josephson Junction

Thilo Bauch,® Tobias Lindstrém,* Francesco Tafuri,? Giacomo Rotoli,? Per Delsing,*
Tord Claeson, Floriana Lombardi**
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Macroscopic quantum tunnelling in spin filter B 1.0
ferromagnetic Josephson junctions

D. Massarotti'2, A. Pal3, G. Rotoli?, L. Longobardi*>, M.G. Blamire3 & F. Tafuri®*
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Interfacing Superconducting Qubits With
Cryogenic Logic: Readout

Caleb Howington“”, Alex Opremcak, Robert McDermott, Alex Kirichenko”, Oleg A. Mukhanov ',
and Britton L. T. Plourde

Replacing room temperature analog components with cryogenic digital
components

An alternative method for measuring qubits involves mapping the qubit state onto
the photon occupation in a microwave cavity, followed by subsequent photon
detection using a Josephson photomultiplier (JPM). The JPM measures the qubit
and stores the result in a classical circulating current.

Existing single flux quantum (SFQ) circuitry. An underdamped Josephson

transmission line (JTL) can be coupled to the JPM and fluxons traveling
along the JTL are accelerated or delayed, depending on the circulating
current state of the JPM. This fluxon delay can then be converted to an
SFQ logic signal resulting in a digital qubit readout paving the way for
cryogenic digital feedback necessary for error-correcting codes.
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Measurement of a superconducting
qubit with a microwave
photon counter

A. Opremcak'*, 1. V. Pechenezhskiy'*t, C. Howington?, B. G. Christensen’, M. A. Beck',
E. Leonard Jr.', J. Suttle’, C. Wilen', K. N. Nesterov', G. J. Ribeill'{, T. Thorbeck'§,
F. Schlenker', M. G. Vavilov', B. L. T. Plourde?, R. McDermott'||

Fast, high-fidelity measurement is a key ingredient for quantum error correction.
Conventional approaches to the measurement of superconducting qubits, involving linear
amplification of a microwave probe tone followed by heterodyne detection at room
temperature, do not scale well to large system sizes. We introduce an approach to
measurement based on a microwave photon counter demonstrating raw single-shot
measurement fidelity of 92% Moreover, the intrinsic damping of the photon counter is used
to extract the energy released by the measurement process, allowing repeated high-fidelity
quantum nondemolition measurements. Our scheme provides access to the classical
outcome of projective quantum measurement at the millikelvin stage and could form the
basis for a scalable quantum-to-classical interface.




Cryogenic set up for qubit measurement

TRITON-
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Now: 24
thermalized filtered
DC-lines + 24
thermalized
unfiltered DC-lines




Cryogenic set up for qubit measurement

RF-lines for qubits
measurements




conclusions

-Interesting use-cases of quantum computing identified
but >100 logical (error corrected) qubits needed ...

-Low depth processors investigated at Google, IBM, Rigetti
Target: quantum advantage

-gate-based processors with quantum error correction
Scalable fab. mandatory.

-Other routes: hybrids, other types of junctions, RSFQ
any space for alternative systems
other than SIS?

hybrid quantum systems
quantum interfaces and couplers
unconventional systems

for alternative layout?
SFS and digital modules RSFQ




