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Physical implementations ?

Trapped ions
Photons (or atoms)
manmade obje

— commercially available
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Electrical
circuits ? usually not quantum !

Quantum Mechanics of a Macroscopic Variable:

A quantum component The Phase Difference of a Josephson Junction

The Josephson junction
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Superconducting phase qubits

John M. Martinis

Superconducting qubit research began in the 1980s motivated by the question, posed by

Anthony Leggett, whether macroscopic variables would behave in a quantum mechan-
ical fashion [23]. Initial experiments verified quantum behavior via the phenomenon
of tunneling out of the zero-voltage state of a current-biased Josephson junction [7]. At
UC Berkeley, quantum mechanical behavior was also demonstrated by the existence
of quantized energy levels [28]. This observation provided stronger proof of quan-
tum behavior, and established at an early stage (before the ideas of qubits were even
widely established) that superconducting circuits could be used as general quantum
systems [3].




Superconductivity as a
Macroscopic Quantum Phenomenon




Quantum behavior displayed by a single macroscopic degree of freedom (the phase
difference across a current-biased Josephson tunnel junctions): whether or not
macroscopic systems like this exhibit quantum mechanical behavior, for example
zero point motion, macroscopic guantum tunneling, or guantization of energy.
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news and views

Schrodinger’s cat is now fat

Metastable state
Quantum tunnelling

PHYSICAL REVIEW
LETTERS

Schrodinger’s dead-and-alive cat was a thought experiment applying the
physics of electrons and atoms to our macroscopic world. New experiments
with superconductors narrow the gap between theoretical ideas and reality.
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Influence of Dissipation on Quantum Tunneling in Macroscopic Systems
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The Josephson effect

A. Barone and G. Paternd, Physics and Applications of the Josephson effect, Witey 1982



The Josephson effect

H=Q2/(2C)—EJcoscp

[qa,Q]=2ih E, <<E_
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A. Barone and G. Paternd, Physics and Applications of the Josephson effect, Witey 1982



Josephson junction: the only
non-linear and non-dissipative component
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QUANTUM OPTICS

FIBERS, BEAMS

4¢P QUANTUM CIRCUITS
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ELECTRONS IN ATOMS

Kb JOSEPHSON JUNCTIONS

ADVANTAGES OF CIRCUITS:

DRAWBACKS OF CIRCUITS:

- PARALLEL FABRICATION METHODS

- MECHANICAL STABILITY

- LEGO BLOCK CONSTRUCTION OF HAMILTONIAN
- ARBITRARILY LARGE ATOM-FIELD COUPLING

ARTIFICIAL ATOMS PRONE TO VARIATIONS




Dominant
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Hybrid quantum circuits: Superconducting circuits interacting
with other quantum systems
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Superconducting Circuits and
Quantum Information

Superconducting circuits can behave like atoms making transitions between two levels.
Such circuits can test quantum mechanics at macroscopic scales and be used to conduct
atomic-physics experiments on a silicon chip.

J. Q. You and Franco Nori 2005 Physics Today
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Junction parameter fluctuations

charged tunnel
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electric
dipoles

A
get rid of randomness of static , P
offset charge om &
possible solutions possible solutions

1-Control offset charge with a gate _ Cooper pair box (charge qubit)

2-make E;/E. very large RF SQUID (flux qubit)
_Curren'r biased Junction (phase qubit)



The quantum path, the single Cooper pair box

Gate  Superconducting
electrode island Tunnel

junction

Superconducting H E (N _ Ng)2 .

Hamiltonian

reservoir

Strategy: compensate
static offset charge

‘ Two limit regimes :
with gate

N2 >> 1




