Detector performance and physics analyses: brief summary

- Covid slowed down sperimental activities, but the same FOOT carried on a lot of work
- This summary not include the performed work of the software group and in the hardware field
- Monthly meeting (1° Wednesday at 14.30): if you want to be included to the mailing list send me a mail
- https://agenda.infn.it/category/1375/
- In each detector there is an ongoing analysis to improve the performance
 - □ SC
 - □ BM
 - Vertex
 - MSD
 - **D** TOFWall
 - Calo
 - DAQ

Analyses in physics environment

- Real Data
 - □ CNAO: Cross Section of 12C fragmentation
 - GSI Data: Emulsion chamber
 - □ GSI + CNAO Data: SC + TOFWall
 - **Detector performance and physics results**
- MC Data:
 - Update on the generation samples
 - Cross Section feasibility
 - Neutron analysis

A lot of involved people: many many many ... thanks

Thanks to Giuseppe and all the Milan group to produce a huge amount of MC following all our requests

Tof, p, ΔE : more precise

Beam definition

 $\frac{d\sigma_{f}}{dE_{kin}} = \frac{(Y_{f} - Bkg_{f})^{U}}{N_{Prim} \cdot N_{t} \cdot \Omega_{Ekin} \epsilon_{f}}$

- Count n° of particles
- Initial Trigger
- Time start
- Discard SC fragmentation
- Extrapolate vertex direction
- Evaluate beam direction

Tracking system

GSI (2019) data taking:

Track efficiency ~25% BTF (july 2019)

□ Firmware \rightarrow eff.~ 100%

Trento 12/2019

- **p** energy: 10, 112, 159, 228 MeV
- **Comparison OLD/NEW chips**

Saturation when beam at 5° wrt MSD

Tof Wall

Detector is complete

Data taking at CNAO-GSI (marchapril 2019) and CNAO (dec 2019)

Resolution:

Energy:

- 4-6 %
- Time SCN: 40-50 ps for ¹²C and 150-190 ps for p
- **Tof (SC+TofW):** 50-75 ps for ${}^{12}C {}^{16}O$

250 ps for p

Position: 7 mm for 12C and 15 mm for p

TEST BEAM OVERVIEW:

- 9 crystals
- 15 µm SiPM arrays
- 3 reflective wrappings: White Painting, Mylar and Tyvek
- Proton Energy: 70, 120, 170, 227 MeV
- Carbon Energy: 115, 190, 260, 330, 399 MeV/A
- Temperature part:
 - For each energy 4 different temperature

Signal depends on temperature (max fluctuation ~ 10%) temperature sensor?

Crystals: all set Mechanics: full design SiPMs: in production DAQ: integration to global to be started

Physics measurements

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TRPMS.2020.2972197, IEEE Transactions on Radiation and Plasma Medical Sciences

Data taking @CNAO

Measurement of ¹²C Fragmentation Cross Sections on C, O and H in the Energy Range of interest for Particle Therapy Applications.

I. Mattei¹, A. Alexandrov⁶, L. Alunni Solestizi^{21,7}, G. Ambrosi⁷, S. Argirò^{8,9}, N. Bartosik⁸, G. Battistoni¹, N. Belcari^{10,11}, S. Biondi^{12,13}, M.G. Bisogni^{10,11}, G. Bruni¹², N. Camarlinghi^{10,11}, P. Carra^{10,11}, E. Catanzani ^{21,7}, E. Ciarrocchi^{10,11}, P. Cerello⁸, A. Clozza¹⁴, S. Colombi^{15,16}, G. De Lellis^{6,17,32}, A. Del Guerra^{10,11}, M. De Simoni^{5,2}, A. Di Crescenzo^{17,6}, M. Donetti^{18,8}, Y. Dong^{1,19}, M. Durante¹⁵, A. Embriaco¹, M. Emde²⁰,

First Cross Section measurement published by FOOT

Differential Cross Section measurements

Beam Exit Target Window 30 cm STS_a: Time 0.2 cm 1 Detectors 113.8 cm 3 STS_b: Time Detectors 0.2 cm I LYSO Energy Detector 8 cm Not to scale Arm2 @60º Arm1 @900 **Published:** 60° and 90° Ongoing 32° and 50°

Emulsion setup: Tracks and vertices

- Track reconstruction done separately for each section
- □ Merge tracks in two sections: 13026 tracks crossing > 30 layers
- BDT multivariate analysis to select good vertexing out of bkg
 - MC: 72% of true vertices selected
 - □ DATA: ~ 40% of expected vertices reconstructed
- Vertex search to be improved

Emulsion setup: charge measurement

Charge assigned to 99.4% of reconstructed tracks

Charge assigned to 91.4% of tracks attached to a vertex

VRO

Z	% on total charged reconstructed tracks			
	Result	Systematic err	Gauss Par err	Statistic err
1	67.9%	5.3%	/	0.5%
2	19.8%	1.2%	0.02%	0.4%
3	7.0%	0.6%	0.03%	0.2%
≥4	5.3%	0.3%	0.01%	0.2%

Cross section with CNAO-GSI data (2019): electronic setup

Feasibility of the Cross Section Measurement (example on Carbon)

Implemented all the machinery for the Cross Section evaluation

Differential cross section of
each produced fragment
$$\frac{d\sigma_{f}}{dE_{kin}} = \frac{(Y_{f} - Bkg_{f})^{U}}{N_{Prim} \cdot N_{t} \cdot \Omega_{Ekin} \epsilon_{f}}$$

To include in SHOE

Underestimation to be investigated Constant distribution

Neutron @ FOOT

Preliminary studies on ¹⁶O+C₂H₄@200 MeV/u (MC data)

Investigate the possibility to use SCN & CALO to detect neutrons

Reliable Calorimeter Threshold ~ 20 MeV $\rightarrow \epsilon \sim 25\%$ accettable $\rightarrow \gamma$ Bkg contribution negligible

Neutron detection and energy measurement with TOF method

Conclusion

Huge amount of great work!!!

My compliment, go on!!!