Quantum Computation of Thermal Averages in the Presence of a Sign Problem

Marco Cardinali marco.cardinali@pi.infn.it

for the QUBIPF collaboration*

Università di Pisa

INFN Pisa 17 January 2020

*Quantum Bari-Pisa-Ferrara collaboration (QUBIPF):

C. Bonati, E. Calore, M. Cardinali, G. Clemente, L. Cosmai, M. D'Elia, A. Gabbana, D. Rossini, S. F. Schifano, R. Tripiccione and D. Vadacchino

Outline

Motivations

The Quantum Metropolis Sampling

The Frustrated Triangle: Numerical Results

Summary

The **sign problem** hinders classical computational methods for QCD at finite density (e.g., nuclei and neutron stars physics):

Euclidean action $S \notin \mathbb{R} \implies \text{weight} \not > 0$ in the path-integral.

The **sign problem** hinders classical computational methods for QCD at finite density (e.g., nuclei and neutron stars physics):

Euclidean action $S \notin \mathbb{R} \implies \text{weight} \not > 0$ in the path-integral.

Quantum Computing (QC) is often popularized as a solution, since the Hamiltonian formulation do not show sign problems.

The **sign problem** hinders classical computational methods for QCD at finite density (e.g., nuclei and neutron stars physics):

Euclidean action $S \notin \mathbb{R} \implies \text{weight} \not > 0$ in the path-integral.

Quantum Computing (QC) is often popularized as a solution, since the Hamiltonian formulation do not show sign problems.

However, most of the work in literature focuses on real-time quantum evolution, not directly useful for computing thermal averages or studying the phase diagram.

The **sign problem** hinders classical computational methods for QCD at finite density (e.g., nuclei and neutron stars physics):

Euclidean action $S \notin \mathbb{R} \implies \text{weight} \not > 0$ in the path-integral.

Quantum Computing (QC) is often popularized as a solution, since the Hamiltonian formulation do not show sign problems.

However, most of the work in literature focuses on real-time quantum evolution, not directly useful for computing thermal averages or studying the phase diagram.

Our goal is to generate Gibbs ensembles, **but** simultaneously trying to overcome the sign problem by QC techniques.

Computing Gibbs ensembles

Many approaches have been proposed, to mention a few:

- approaches based on variational methods; J. Whitfield et al. (2011)
- quantum simulated annealing; R. D. Somma et al. (2008)
- quantum metropolis methods; B. Terhal, D. Di Vincenzo (2000)
- others...

Computing Gibbs ensembles

Many approaches have been proposed, to mention a few:

- approaches based on variational methods; J. Whitfield et al. (2011)
- quantum simulated annealing; R. D. Somma et al. (2008)
- quantum metropolis methods; B. Terhal, D. Di Vincenzo (2000)
- others...

We focus our analysis to the **Quantum Metropolis Sampling** (QMS) algorithm, presented in [K. Temme *et al.*, Nature **471** (2011) 87], showing its application to a system affected by sign problem and analyzing sources of systematical errors. [arXiv:2001.05328]

Computing Gibbs ensembles

Many approaches have been proposed, to mention a few:

- approaches based on variational methods; J. Whitfield et al. (2011)
- quantum simulated annealing; R. D. Somma et al. (2008)
- quantum metropolis methods; B. Terhal, D. Di Vincenzo (2000)
- others...

We focus our analysis to the **Quantum Metropolis Sampling** (QMS) algorithm, presented in [K. Temme *et al.*, Nature **471** (2011) 87], showing its application to a system affected by sign problem and analyzing sources of systematical errors. [arXiv:2001.05328]

Disclaimer: we studied only universal properties of the algorithm using our Simulator for Universal Quantum Algorithms (SUQA), excluding from the analysis machine-specific quantum errors.

[K. Temme et al., Nature 471, (2011) 87, arXiv:0911.3635 [quant-ph]].

Philosophy: sample a Gibbs ensamble of energy eigenstates, i.e., weighted as $\rho(\beta) \propto \mathrm{e}^{-\beta H}$, via a quantum-driven **Markov Chain** which satisfies a properly modified version of Detailed Balance.

[K. Temme et al., Nature 471, (2011) 87, arXiv:0911.3635 [quant-ph]].

Philosophy: sample a Gibbs ensamble of energy eigenstates, i.e., weighted as $\rho(\beta) \propto \mathrm{e}^{-\beta H}$, via a quantum-driven **Markov Chain** which satisfies a properly modified version of Detailed Balance.

Assumption: an energy eigenstate must be build to start the chain.

[K. Temme et al., Nature 471, (2011) 87, arXiv:0911.3635 [quant-ph]].

Philosophy: sample a Gibbs ensamble of energy eigenstates, i.e., weighted as $\rho(\beta) \propto \mathrm{e}^{-\beta H}$, via a quantum-driven **Markov Chain** which satisfies a properly modified version of Detailed Balance.

Assumption: an energy eigenstate must be build to start the chain.

Resources:

The global state of the QMS algorithm is encoded in four registers:

- state of the system (n qubits); (digitalization)
- energy before MC step (r qubits); (incommensurability)
- energy after MC step (r qubits); (as above)
- acceptance (1 qubit).

[K. Temme et al., Nature 471, (2011) 87, arXiv:0911.3635 [quant-ph]].

Philosophy: sample a Gibbs ensamble of energy eigenstates, i.e., weighted as $\rho(\beta) \propto \mathrm{e}^{-\beta H}$, via a quantum-driven **Markov Chain** which satisfies a properly modified version of Detailed Balance.

Assumption: an energy eigenstate must be build to start the chain.

Resources:

The global state of the QMS algorithm is encoded in four registers:

- state of the system (n qubits); (digitalization)
- energy before MC step (r qubits); (incommensurability)
- energy after MC step (r qubits); (as above)
- acceptance (1 qubit).
- \implies basis elements: $|acc, E^{new}, E^{old}, \psi\rangle$

Initialization: prepare $|0,0,0,\psi_k\rangle$, with $|\psi_k\rangle$ any eigenstate.

Initialization: prepare $|0,0,0,\psi_k\rangle$, with $|\psi_k\rangle$ any eigenstate.

Phase estimation (PE) on E^{old} : $|0,0,0,\psi_k\rangle \xrightarrow{\Phi^{(old)}} |0,0,E_k,\psi_k\rangle$

M. Troyer and U. J. Wiese (2005) (Trotterization)

Initialization: prepare $|0,0,0,\psi_k\rangle$, with $|\psi_k\rangle$ any eigenstate.

Phase estimation (PE) on E^{old} : $|0,0,0,\psi_k\rangle \xrightarrow{\Phi^{(old)}} |0,0,E_k,\psi_k\rangle$

M. Troyer and U. J. Wiese (2005) (Trotterization)

Quantum Metropolis trial: draw classically and apply an unitary operator C to the state qubits followed by a PE on E^{new}

$$|0,0,E_k,\psi_k\rangle \xrightarrow{C} \sum_{p} x_{k,p}^{(C)} |0,0,E_k,\psi_p\rangle \xrightarrow{\Phi^{(new)}} \sum_{p} x_{k,p}^{(C)} |0,E_p,E_k,\psi_p\rangle.$$

Initialization: prepare $|0,0,0,\psi_k\rangle$, with $|\psi_k\rangle$ any eigenstate.

Phase estimation (PE) on E^{old} : $|0,0,0,\psi_k\rangle \xrightarrow{\Phi^{(old)}} |0,0,E_k,\psi_k\rangle$ M. Troyer and U. J. Wiese (2005) (Trotterization)

Quantum Metropolis trial: draw classically and apply an unitary operator C to the state qubits followed by a PE on E^{new}

$$|0,0,E_k,\psi_k\rangle \xrightarrow{\mathcal{C}} \sum_{p} x_{k,p}^{(\mathcal{C})} |0,0,E_k,\psi_p\rangle \xrightarrow{\Phi^{(new)}} \sum_{p} x_{k,p}^{(\mathcal{C})} |0,E_p,E_k,\psi_p\rangle.$$

Acceptance evaluation: apply an appropriate operator $W(E_p, E_k)$ to the acceptance qubit

$$\begin{split} \sum_{p} x_{k,p}^{(C)} \left| 0, E_{p}, E_{k}, \psi_{p} \right\rangle & \xrightarrow{W} \\ \sum_{p} x_{k,p}^{(C)} \left(f(\Delta E_{p,k}) \left| 1 \right\rangle + \sqrt{1 - f(\Delta E_{p,k})} \left| 0 \right\rangle \right) \otimes \left| E_{p}, E_{k}, \psi_{p} \right\rangle, \end{split}$$

where
$$f(\Delta E_{p,k}) \equiv \min (1, e^{-\beta(E_p - E_k)/2})$$
.

QMS: sketch of the algorithm (cont.d)

accept/reject: measure on the acceptance qubit; two possibilities:

- 1 means **accept**: we proceed with measuring on the E^{new} register, so we obtain a new eigenstate on the state register.
- 0 means **reject**: we need to *revert* the system to the initial state by trying to project back until $E^{new} == E^{old}$. (threshold on reversal steps)

QMS: sketch of the algorithm (cont.d)

accept/reject: measure on the acceptance qubit; two possibilities:

- 1 means **accept**: we proceed with measuring on the E^{new} register, so we obtain a new eigenstate on the state register.
- 0 means **reject**: we need to *revert* the system to the initial state by trying to project back until $E^{new} == E^{old}$. (threshold on reversal steps)

Energy measures are taken at each MC step, without cost. Measuring non-H-commuting observables breaks the chain: a certain number of rethermalization steps are required.

QMS: sketch of the algorithm (cont.d)

accept/reject: measure on the acceptance qubit; two possibilities:

- 1 means **accept**: we proceed with measuring on the E^{new} register, so we obtain a new eigenstate on the state register.
- 0 means **reject**: we need to *revert* the system to the initial state by trying to project back until $E^{new} == E^{old}$. (threshold on reversal steps)

Energy measures are taken at each MC step, without cost. Measuring non-*H*-commuting observables breaks the chain: a certain number of rethermalization steps are required.

Let's see the QMS algorithm in action on a toy model with sign problem: the *Frustrated Triangle*.

Minimal Model with Sign Problem: the Frustrated Triangle

Hamiltonian for an antiferromagnetic (J > 0) Ising triangle

$$H = J(\sigma_X \otimes \sigma_X \otimes \mathbb{1} + \sigma_X \otimes \mathbb{1} \otimes \sigma_X + \mathbb{1} \otimes \sigma_X \otimes \sigma_X),$$

The path-integral with a finite number N of layers with 3-qubits states $|\alpha_i\rangle$ in the computational basis reads:

$$Z[\beta] = Tr\left[e^{-\beta H}\right] = \sum_{\{\alpha_i\}} \prod_{i=1}^{N} \langle \alpha_{i+1} | e^{-\frac{\beta H}{N}} | \alpha_i \rangle,$$

where $T \equiv e^{-\frac{\beta H}{N}}$ is the **transfer matrix**.

Here the sign-problem comes from non positive off-diagonal elements in the transfer matrix (e.g. $\langle 011|\,\mathrm{e}^{-\frac{\beta H}{N}}\,|000\rangle < 0$).

Numerical Results of the QMS algorithm

Tested with non-diagonal, non-H-commuting observables, e.g.:

0.2

-0.1 -0.2 8×10⁻⁴

 4×10^{-4} 0 -4×10^{-4} -8×10^{-4}

0.2

0.4

0.6

0.8

 Digitalization: representing physics of continuum d.o.f. with a finite number of qubits n;

D. C. Hackett et al. (2019)

 Digitalization: representing physics of continuum d.o.f. with a finite number of qubits n;

```
D. C. Hackett et al. (2019)
```

 Digitalization: representing physics of continuum d.o.f. with a finite number of qubits n;

```
D. C. Hackett et al. (2019)
```

- Finite Trotter step-size in the phase-estimation procedure.

 Digitalization: representing physics of continuum d.o.f. with a finite number of qubits n;

```
D. C. Hackett et al. (2019)
```

- Finite Trotter step-size in the phase-estimation procedure.
- Threshold in the number of reversal attempts in case of reject;

 Digitalization: representing physics of continuum d.o.f. with a finite number of qubits n;

```
D. C. Hackett et al. (2019)
```

- Finite Trotter step-size in the phase-estimation procedure.
- Threshold in the number of reversal attempts in case of reject;
- Rethermalization steps after a measure;

 Digitalization: representing physics of continuum d.o.f. with a finite number of qubits n;

```
D. C. Hackett et al. (2019)
```

- Finite Trotter step-size in the phase-estimation procedure.
- Threshold in the number of reversal attempts in case of reject;
- Rethermalization steps after a measure;

These systematics are manageable, at least for small to medium scale simulations.

Phase estimation in general

Energy estimate for an eigenstate with exact energy $\frac{1}{\sqrt{2}}$.

Error decreases as $2^{-(\text{num. qbits})}$, while the discrepancy stays of the same order of magnitude of the error.

Phase estimation: QMS with incommensurable levels

Energy levels: 0, $\frac{1}{2}$, $\frac{1}{\sqrt{2}}$ and $\frac{3}{4}$.

The measured energy distribution seems to converge to the exact result for increasing energy qbits.

Reversal steps in the QMS algorithm

The typical number of steps needed for reverting back the state is relatively small. Small β behave worse.

Re-thermalization process

Non H-commuting observables need more re-thermalization steps.

Summary and Perspectives

Sum up:

- the sign problem, and the role of Quantum Computing as a solution, have been discussed;
- we briefly overviewed the Quantum Metropolis Sampling (K. Temme et al. (2011)), showing sources of systematical errors;
- we applied the QMS algorithm to a minimal model with sign problem, the frustrated triangle, obtaining results in good agreement with the exact ones.

Work in progress:

- we are extending the analysis to increasingly complex systems, taking care of systematical errors;
- in particular, we are implementing codes for non-abelian gauge systems, for which some modification are in order, and the phase estimation needs an evolution procedure which keeps gauge-invariance. [NuQS Collaboration, PRD 11, 114501 (2019)]

Summary and Perspectives

Sum up:

- the sign problem, and the role of Quantum Computing as a solution, have been discussed;
- we briefly overviewed the Quantum Metropolis Sampling (K. Temme et al. (2011)), showing sources of systematical errors;
- we applied the QMS algorithm to a minimal model with sign problem, the frustrated triangle, obtaining results in good agreement with the exact ones.

Work in progress:

- we are extending the analysis to increasingly complex systems, taking care of systematical errors;
- in particular, we are implementing codes for non-abelian gauge systems, for which some modification are in order, and the phase estimation needs an evolution procedure which keeps gauge-invariance. [NuQS Collaboration, PRD 11, 114501 (2019)]

Thank you for the attention!

Additional slides

The Frustrated Triangle: transfer matrix

From the Hamiltonian:

$$H = J(\sigma_X \otimes \sigma_X \otimes \mathbb{1} + \sigma_X \otimes \mathbb{1} \otimes \sigma_X + \mathbb{1} \otimes \sigma_X \otimes \sigma_X),$$

straightforward calculations bring us to the following formula for the transfer matrix:

$$e^{-\frac{\beta H}{N}} = \frac{1}{4} \left[\left(e^{-3\frac{\beta J}{N}} + 3e^{+\frac{\beta J}{N}} \right) \mathbb{1} + \left(e^{-3\frac{\beta J}{N}} - e^{+\frac{\beta J}{N}} \right) \frac{H}{J} \right].$$

Clearly, $\left(e^{-3\frac{\beta J}{N}}-e^{+\frac{\beta J}{N}}\right)<0$ for $\beta J>0$; this is the origin of the **sign problem**.