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“Information is physical”

Rolf Landauer
IBM Thomas J. Watson Research Center, NY, USA (1991)



Moore’s Law — The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

linked to Moore's law.
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Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
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Classical vs. Quantum computers

Classical computer:
A computer that uses voltages flowing through circuits and gates
which can be manipulated entirely through classical mechanics

— Moore's law: no. of on-chip transistors doubles every 18 months

— emergence of quantum phenomena such as electron tunneling
through barriers between wires, due to downscaling of circuit boards

— serial processing: one operation at a time
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Classical computer:
A computer that uses voltages flowing through circuits and gates
which can be manipulated entirely through classical mechanics

— Moore's law: no. of on-chip transistors doubles every 18 months

— emergence of quantum phenomena such as electron tunneling
through barriers between wires, due to downscaling of circuit boards

— serial processing: one operation at a time

Quantum computer:
A computer that exploits quantum mechanical phenomena
to perform operations on data through suitable devices

— harnesses the power of atoms/molecules to perform memory & processing tasks
— parallel processing due to quantum superposition and entanglement



Classical vs. Quantum computers

Bit

M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Il ed., Cambridge 2010)

J. Preskill, Lecture notes for Physics 229: Quantum information and computation (CalTech 1998)
available at: htt p: // www. t heory. cal t ech. edu/ peopl e/ preski |l |/ ph219/

G. Benenti, G. Casati, D. Rossini, G. Strini, Principles of quantum computation and information:
a comprehensive textbook (World Scientific 2019)



Classical logic: the bit
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Classical logic

bit: 2 basicstates (0=off 1=o0n)
mutually exclusive
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Classical logic

In computers the NAND gate is usually implemented via transistors.
A bit is set to 1 if the voltage is positive and to O if the voltage is zero.

Here the current flows through the transistors if and only if both inputs
have positive voltage. In this case, the output has zero voltage.

If at least one of the inputs has zero voltage, there is no current flow
and therefore the output has positive voltage.

The NAND gate

Network of classical gates
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Quantum logic

Qubit (quantum bit): 2 basic states
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Quantum logic

Qubit (quantum bit): 2 basic states + superpositions

Bloch sphere
In general the state of a qubit can be a

linear superposition of |0> and |1>
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Quantum logic

Qubit (quantum bit): 2 basic states + superpositions

INPUT: n qubit
|Il’b>1:2:33"'an
Algorithm
1Y) = al0) + 51) i
OUTPUT: n qubit
o and (3 arbitrary complex numbers, ~
such that |of* + [B]* = 1 |77b>1,2,3,---,n
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Quantum gates

Set of universal quantum gates (reversible):

Single-qubit gates 0) — %(\O} + 1))

e.g. Hadamard 1) — %(!0> - ‘1>)

H H = L { b ] transforms |0)) and|1)in
v2 [ 1 -1 superpos!tign sta|te>s



Quantum gates

Set of universal quantum gates (reversible):

Single-qubit gates 0) = =5 (10) + (1))
e.g. Hadamard 1) — %(!@ - \1>)
H H = ! {1 1 ] transforms | '
= —= 0) and|1)in
v2 [ 1 -1 superposition states
A - :
P Two-qubit gate: 04 @05 = |[0)4 ®
C(?ntroI-NOT _ 0)a®|1)p — [0)ae
B 1 0 0 0
O 1 0 O
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Quantum circuits

Qubits initialization Phase estimation Measurement

i e

polarizer

PBS6 prism

R(A ) rotation
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X.-D. Cai et al., Experimental quantum computing to solve systems of linear equations,
Phys. Rev. Lett. 110, 230501 (2013)



A simple example

Given a one-bit function f, determine whether it is costant or balanced

(1)] — constant

=

=
I

~

f:4{0,1} — {0,1}

= With classical logic one needs to evaluate f twice
2 With quantum logic it is sufficient to evaluate f once

D. Deutsch, Proc. Roy. Soc. London A 400, 97 (1985)
D. Deutsch and R. Jozsa, Proc. Roy. Soc. London A 439, 553 (1992)



Deutsch's algorithm

R
0) 4 H, * H,
1)p — Hs f

N

measurement

) aly)B = |x) aly © f(2))B




Deutsch’s algorithm
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Deutsch’s algorithm
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Deutsch’s algorithm
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Deutsch’s algorithm
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Quantum algorithms

Exploiting quantum parallelism, it is possible to devise
algorithms which are exponentially (or substantially) faster
than any known classical algorithm for the same purpose
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SIAM J. COMPUT. @ 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 5, pp. 1484-1509, October 1997 009

POLYNOMIAL-TIME ALGORITHMS FOR PRIME FACTORIZATION
AND DISCRETE LOGARITHMS ON A QUANTUM COMPUTER*

PETER W. SHOR

Abstract. A digital computer is generally believed to be an efficient universal computing device;
that is, it is believed able to simulate any physical computing device with an increase in computation
time by at most a polynomial factor. This may not be true when quantum mechanics is taken into

consideration. This paper considers factoring integers and finding discrete logarithms, two problems
which are generally thought to be hard on a classical computer and which have been used as the basis
of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems
on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the

input size, e.g., the number of digits of the integer to be factored.

O(eV™) = O(n?logn)




Quantum algorithms

Exploiting quantum parallelism, it is possible to devise
algorithms which are exponentially (or substantially) faster
than any known classical algorithm for the same purpose

VOLUME 79, NUMBER 2 PHYSICAL REVIEW LETTERS 14 JuLy 1997

Quantum Mechanics Helps in Searching for a Needle in a Haystack

Lov K. Grover*

3C-404A Bell Labs, 600 Mountain Avenue, Murray Hill, New Jersey 07974
(Received 4 December 1996)

Quantum mechanics can speed up a range of search applications over unsorted data. J.For example,
imagine a phone directory containing N names arranged in completely random order. To find some-
one’s phone number with a probability of 50%, any classical algorithm (whether deterministic or proba-
bilistic) will need to access the database a minimum of 0.5N times. Quantum mechanical systems can
be in a superposition of states and simultaneously examine multiple names. By properly adjusting the
phases of various operations, successful computations reinforce each other while others interfere ran-
domly. As a result, the desired phone number can be obtained in only O(/N ) accesses to the database.
[S0031-9007(97)03564-3]




Quantum algorithms

Exploiting quantum parallelism, it is possible to devise
algorithms which are exponentially (or substantially) faster
than any known classical algorithm for the same purpose

Unfortunately such algorithms require
a huge amount of resources (# quantum gates)

e.g. factorizing a 4096-bit number would require O(10%) gates...

Unfeasible with present-day technology :-(

Look for possible alternatives......



Adiabatic Quantum Computation

A class of procedures for solving optimization problems with quantum computers.

E. Fahri, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, Science 292, 472 (2001)
G. E. Santoro, R. Martonak, E. Tosatti, R. Car, Science 295, 2427 (2002)
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Adiabatic Quantum Computation

A class of procedures for solving optimization problems with quantum computers.

Basic strategy:

» design a problem Hamiltonian Hp whose ground state
encodes the solution of an optimization problem

 prepare the known ground state of a simple Hamiltonian H,

- interpolate slowly S A control parameter
1

H(s)=|1—s|Hy+sHp

(adiabatic theorem)

— : >
0 T time

E. Fahri, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, Science 292, 472 (2001)
G. E. Santoro, R. Martonak, E. Tosatti, R. Car, Science 295, 2427 (2002)



Where are we now?



Current

Capacitors

Inductor

~——Microwaves

Superconducting loops
A resistance-free current
oscillates back and forth around
acircuit loop. An injected
microwave signal excites

the current into super-
position states.

Longevity (seconds)
0.00005

Logic success rate
99.4%

Company support
Google, IBM, Quantum Circuits

© Pros
Fast working. Build on existing
semiconductor industry.

© Cons

Collapse easily and must
be kept cold.

Physical systems for qubits

Microwaves

Laser

Electron

Trapped ions

Electrically charged atoms, or
ions, have quantum energies
that depend on the location of
electrons. Tuned lasers cool
and trap the ions, and put
them in superposition states.

Very stable. Highest
achieved gate fidelities.

Slow operation. Many
lasers are needed.

Silicon quantum dots

These “artificial atoms”
are made by adding an
electronto a small piece

of pure silicon. Microwaves
control the electron’s
quantum state.

Stable. Build on existing
semiconductor industry.

Only a few entangled.
Must be kept cold.

Time

Topological qubits
Quasiparticles can be seen
in the behavior of electrons
channeled through semi-
conductor structures.Their
braided paths can encode
quantum information.

Microsoft,
Bell Labs

Greatly reduce
errors.

Existence not yet
confirmed.

Electron

Vacancy—;

Laser

Diamond vacancies

A nitrogen atom anda
vacancy add an electronto a
diamond lattice. Its quantum
spin state, along with those
of nearby carbon nuclei,
can be controlled with light.

Quantum Diamond
Technologies

Can operate at
room temperature.

Difficult to
entangle.

G. Popkin, Science 354, 1091 (2016)



Quantum computers
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Quantum computers: status

Current technology

= 50-qubit operating machines needed to rival current classical equivalents

Errors
* Imperfections in realizing quantum gates

* Decoherence: tendency to decay from a given quantum state
into an incoherent state, due to interactions with environment

= O(10%) gates
until decoherence sets in

breakdown of information
stored in the quantum computer

Error rates typically proportional to the ratio of operating time to decoherence time:
operations must be completed much quicker than the decoherence time.




Quantum supremacy tests

REVIEW

Quantum computational supremacy

Aram W. Harrow! & Ashley Montanaro?

doi:10.1038/nature23458

The field of quantum algorithms aims to find ways to speed up the solution of computational problems by using a quantum
computer. A key milestone in this field will be when a universal quantum computer performs a computational task that is
beyond the capability of any classical computer, an event known as quantum supremacy. This would be easier to achieve
experimentally than full-scale quantum computing, but involves new theoretical challenges. Here we present the leading
proposals to achieve quantum supremacy, and discuss how we can reliably compare the power of a classical computer
to the power of a quantum computer.

ICenter for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. 2School of Mathematics, University of Bristol, Bristol BS8 1TW, UK.

14 SEPTEMBER 2017 | VOL 549 | NATURE | 203
© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



Quantum supremacy tests

) Boson sampling

Sampling the output distribution of noninteracting bosons
evolving through an arbitrary (random) linear network

input outpul

‘ _ z 2 modes
. F

photons

n
Transition amplitudes are related to the permanent per(U) = Z H Ui, o (4)
of a square matrix (classically hard to compute) 0es, i=1

“Small-scale quantum computers made from an array of interconnected waveguides on a glass chip
can now perform a task that is considered hard to undertake on a large scale by classical means.”

T. Ralph, News & Views, Nature Photonics 7, 514 (2013)



Quantum supremacy tests

> Random circuit sampling

More in general, use quantum computers for their natural tasks:
execute an arbitrary (random) circuit.

Article | Published: 23 October 2019

Quantum supremacy using a
programmable superconducting ,>
processor w e

Abstract
Frank Arute, Kunal Arya, [...] John M. Martinis The promise of quantum computers is that certain computational tasks mightbe
executed exponentially faster on a quantum processor than on a classical processor'. A
Nature 574, 505-510(2019) | Cite this article fundamental challenge is to build a high-fidelity processor capable of running quantum

algorithmsin an exponentially large computational space. Here we report the use of a
653k Accesses | 20 Citations | 6024 Altmetric processorwith programmable superconducting qubits*” to create quantum stateson
7 53 qubits, corresponding to a computational state-space of dimension 2** (about 10').
LA B : b o Measurements from repeated experiments sample the resulting probability

distribution, which we verify using classical simulations. Our Sycamore processor takes
about200seconds to sample one instance of a quantum circuita million times—our
benchmarks currently indicate that the equivalent task for a state-of-the-art classical
supercomputer would take approximately 10,000 years. This dramatic increase in

speed comparedtoall known classical algorithms is an experimental realization of
quantum supremacy®* for this specific computational task, heralding a much-
anticipated computing paradigm.




Principles of Quantum Computation and Information:
A Comprehensive Textbook

G. Benenti, G. Casati, D. Rossini, G. Strini

Giuliano Benenti Giulio Casati
Davide Rossini Giuliano Strini

Principles of Quantum Computation
and Information

A Comprehensive Textbook

World Scientific
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Adiabatic Quantum Computation

H(s) = [1—s|Ho+sHp s(t) € 10,1]
s(0) =0; s(T) =1

The interpolation has to be done slowly.
According to the adiabatic theorem, the time T has to be:

T>T%/A%,]  with T2 = max ||[H(s)]’]
s€[0,1]




Adiabatic Quantum Computation

H(s) = [1—s]Hy+sHp s(t) € [0, 1]
s(0) =0; s(T) =1

The interpolation has to be done slowly.
According to the adiabatic theorem, the time T has to be:

T>T%/A%,]  with T2 = max ||[H(s)]’]
s€[0,1]

How big is Amin?
Amnin > 1/poly(n) —» efficient quantum algorithm

Ampin ~ 1/ exp(n) —» inefficient quantum algorithm

Hard problems (NPC) are equivalent to finding the gs of Ising-like
spin-glass Hamiltonians. F. Barahona, J. Phys. A 15, 3241 (1982)
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