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Generative Adversarial Nets
Intfroduction

GANs!! are a powerful class of generative models based on

simultaneous training of two neural networks:

= Generator network (G) that produces synthetfic data
given some noise source;

= Discriminator network (D) that distinguishes generator’s
output from true datal?,

We want that D to optimally discriminate on the origin of the
two samples. Simultaneously the training procedure for G is
to maximize the probability of D making a mistake. This
framework corresponds to a minimax two-player gamel'l,

[1] I.J. Goodfellow et al.. "Generative Adversarial Netfs”. arXiv:1406.2661.
[2] I. Gulrgjani, F. Ahmed, M. Arjovsky, V. Dumoulin & A. Courville. “Improved Training of Wasserstein GANs”. arXiv:1704.00028.


https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1704.00028v3
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Generative Adversarial Nets
Application in Computer Vision

GANs are widely used as generative image model thanks to
its capacity in reproducing highly faithful and diverse
images with models learned directly from datal?l,

[3] A. Brock, J. Donahue & K. Simonyan. “Large Scale GAN Training for High Fidelity Natural Image Synthesis”. arXiv:1809.11096.


https://arxiv.org/abs/1809.11096
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Generative Adversarial Nets
Application in Physics
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[4] M. Paganini, L. de Oliveira & B. Nachman. “"CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative
Adversarial Networks”. arXiv:1712.10321.

[5] P. Musella & F. Pandolfi. “Fast and accurate simulation of particle detectors using generative adversarial networks”. arXiv:1805.00850.

[6] K. Schawinski, Ce Zhang, H. Zhang, L. Fowler & G.K. Santhanam. “Generative Adversarial Networks recover features in astrophysical images of galaxies beyond the
deconvolution limit”. arXiv:1702.00403.

[71 M. Erdmann, L. Geiger, J. Glombitza & D. Schmidt. “"Generating and refining particle detector simulations using the Wasserstein distance in adversarial networks”.
arXiv:1802.03325.

[8] L. Mosser, O. Dubrule & M.J. Blunt. “Reconstruction of three-dimensional porous media using generative adversarial neural networks”. arXiv:1704.03225.

[?] A. Kadurin, A. Aliper, A. Kazennov, P. Mamoshina, Q. Vanhaelen, K. Khrabrov & A. Zhavoronkov. “The cornucopia of meaningful leads: Applying deep adversarial
autoencoders for new molecule development in oncology”. Oncotarget.14073.



https://arxiv.org/abs/1712.10321
https://arxiv.org/abs/1805.00850
https://arxiv.org/abs/1702.00403
https://arxiv.org/abs/1802.03325
https://arxiv.org/abs/1704.03225
http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path%5b%5d=14073&path%5b%5d=44886
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Generative Adversarial Nets
Application to particle identification
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Going back to Particle Physics application, we are currently
working on the development of an ultra-fast simulation for
PID system in LHCb using GANs to generate high-level
reconsfructed observableslio 11,

Images above show the performance of the Lamarr
Prototype, an ultra-fast simulation option developed for the
LHCb Experimentl!2],

[10] G. Sassoli & L. Anderlini. “Generative Adversarial Networks for Fast Simulation of MuonID”. Machine Learning @ INFN Firenze.

[11] A. Maevskiy, D. Derkach, N. Kazeev, A. Ustyuzhanin, M. Artemev & L. Anderlini. “Fast Data-Driven Simulation of Cherenkov Detectors Using Generative Adversarial
Networks”. arXiv:1905.11825.

[12] LHCb Collaboration. “Performance of the Lamarr Prototype: the ultra-fast simulation option integrated in the LHCb simulation framework”. LHCB-FIGURE-2019-017.



https://agenda.infn.it/event/18687/contributions/87860/attachments/62446/74893/Generative_Adversarial_Networks.pdf
https://arxiv.org/abs/1905.11825
http://cds.cern.ch/record/2696310?ln=it
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Generative Adversarial Nets
Minimax two-player game

Defining the function V(D,G) as follows
V(D,G) = Eqgp [log D(z)] + E.p [log(1l — D(G(2)))]

the minimax game can be written in this form:

min max V' (D, G)
G D

A unique solution exists, with G recovering the training data
distribution and D equal to 2 everywherelll,

[1] 1. J. Goodfellow et al.. “Generative Adversarial Nets”. arXiv:1406.2661.



https://arxiv.org/abs/1406.2661
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Generative Adversarial Nets
Pedagogical explanation
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a) Minimax game near convergence: Py is similar to P, and D is a parfially
accurate classifier.

b) D istrained to discriminate samples from data, converging to optimality.

c) After an update of G, gradient of D has guided G(z) to flow to region that
are more likely to be classified as data.

d) After several steps of training, they will reach a point at witch both
cannot improve because the discriminator is unable to differentiate
between the two distributions(l.

[1] 1. J. Goodfellow et al.. “Generative Adversarial Nets”. arXiv:1406.2661.


https://arxiv.org/abs/1406.2661
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Generative Adversarial Nets
Jensen-Shannon divergence

Solving the minimax game corresponds to minimize the
Jensen-Shannon divergence between the real data
distribution P, and the generator’s distribution P,.

By varying NN parameters 6, we can change the map Ggq
fo data space and make P, close to the real data
distribution. It corresponds to minimize JS divergence that
goes to zero for equal distributions.

GANs take a radically different approach compared to
other deep generative model not requiring inference or
explicit calculation of the data likelihood!'3l,

[13] L. Metz, B. Poole, D. Pfau & J. Sohl-Dickstein. “Unrolled Generative Adversarial Networks”. arXiv:1611.02163.


https://arxiv.org/abs/1611.02163
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Training GANs
Problems

GAN:s suffer from many issues, particularly during training:

= generator collapsing to produce only a single sample or
a small family of very similar samples;

= generator and discriminator oscillating during fraining
rather than converging to a fixed point;

= if imbalance between the two agents occurs, the system
doesn't learnl'sl,

In theory, although minimax game corresponds to minimize
JS divergence when the discriminator is optimal, training it till
optimality and then doing gradient steps on 6 doesn’t work!
In practise, as the discriminator gets better, the updates to
the generator gets consistently worsell4l,

[13] L. Metz, B. Poole, D. Pfau & J. Sohl-Dickstein. “Unrolled Generative Adversarial Networks™. arXiv:1611.02163.
[14] M. Arjovsky & L. Bottou. “Towards Principled Methods for Training Generative Adversarial Networks”. arXiv:1701.04862.


https://arxiv.org/abs/1611.02163
https://arxiv.org/abs/1701.04862
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Training GANs
Vanishing gradient

Typically, the divergences which GANs minimize are not
continuous with respect to generator’s parameters 612, This
allows the existence of the perfect discriminator D* for
which the gradient on the generator vanishes. If we consider
an approximation D that distances € from D*, we can prove
what follows:

li E..p |log(l—2D =
lim VB log(1 — D(G(=)))] = 0

As our discriminator gets better, the gradient of the
generator vanishes. In other words, either our updates to the
discriminator will be inaccurate, or they will vanisht!4l,

[2] I. Gulrgjani, F. Ahmed, M. Arjovsky, V. Dumoulin & A. Courville. “Improved Training of Wasserstein GANs”. arXiv:1704.00028.
[14] M. Arjovsky & L. Bottou. “Towards Principled Methods for Training Generative Adversarial Networks”. arXiv:1701.04862.


https://arxiv.org/abs/1704.00028v3
https://arxiv.org/abs/1701.04862
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Training GANs
Noise insertion

There is something we can do to break our gradient
problem: adding continuous noise to both discriminator and
generator. This move allows to learn thanks to non-zero
gradient of the generator. However, it's now proportional to
the gradient of noisy JS divergence:

E..p. e [Volog(l — DX(Go(2) + £))] = 2+ V]S (Prpe|| Pysc)

This variant of JS divergence measures a similarity between
the two noisy distribution and isn’t an intrinsic measure of P,
and Py. Luckily, using Wasserstein metric we can solve this
probleml4],

[14] M. Arjovsky & L. Bottou. “Towards Principled Methods for Training Generative Adversarial Networks”. arXiv:1701.04862.


https://arxiv.org/abs/1701.04862
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Wasserstein GANs
Earth-Mover distance

The Earth-Mover distance induces the Wasserstein metric:

W(P. P)= inf BE.o.lllz—
(P, Py) it ()~ 1T = Y]

where with y(X,y) we indicate every joint distribution whose
marginals are respectively P, and P,. The EM distance is the
cost of the optimal transport plan from x to y.

For EM distance, we can demonstrate that

» |f Ggis continuous in 6, so is W(P,,Pg);

» |f Gg is locally Lipschitz and continuous, the W(P,Pg) is
continuous e.w., and differentiable almost e.w.;

= JS and KL divergences don't have these properties!sl,

[15] M. Arjovsky, S. Chintala & L. Bottou. "Wasserstein Generative Adversarial Networks”. arXiv:1701.07875.


https://arxiv.org/abs/1701.07875
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Wasserstein GANs
Wasserstein loss

The Earth-Mover distance can be defined also as:

W(Pra Pg) — HfS“uIilewPr [f(ﬂ?)] o Ewag [f(CC)]

where the supremum is over all the 1-Lipschitz functions f.
Considering the K-Lipschitz family {f,,}, then we end up with
K-times EM distance.

In WGAN context, the discriminative model corresponds to
finding the function f that maximize the previous relation.
Simultaneously, we want to minimize the EM distance with
respect to 8 for the distributions convergencel’sl,

[15] M. Arjovsky, S. Chintala & L. Bottou. "Wasserstein Generative Adversarial Networks”. arXiv:1701.07875.


https://arxiv.org/abs/1701.07875
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Wasserstein GANs
Critic function

Typically, WGAN solves the minimax game with the critic
function (f,) that can approximate the problem up to @
scaling factor.

T T T = oo The fact that the EM distance is
cemvoriee | contfinuous e.w. and differentiable
almost e.w. means that we can frain

the critic till optimaility.

WGAN Critic

In the figure, we can see the original
GAN discriminator saturates and results
Varieting bracionts. | in vanishing gradients. The crific,
in regular GAN however, can’'t saturate (K-Lipschitz),
5 =« = o = e s gnd converges to alinear function!’s.

[15] M. Arjovsky, S. Chintala & L. Bottou. "Wasserstein Generative Adversarial Networks”. arXiv:1701.07875.


https://arxiv.org/abs/1701.07875
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Cramér GANs
Unbiased sample gradients

Most of loss functions used in machine learning are
distances d, as in the case of Wasserstein meftric. A crucial
characteristic of this kind of loss is the unbiased sample
gradients (U) nofion owningl'el:

E.,,~P [Ved (ﬁma Qa)] = Vyd(P, Qy)

Wasserstein metric is an ideal divergencel!'él, but it doesn’t
have (U). So, we need a distance that not only has the
same appealing properties of Wasserstein metric but also
provides us with (U): the Cramér distance.

lo (P, Q) = sup | Eyp[f(2)] — Epg [f(2)] |

[16] M. G. Bellemare, |. Danihelka, W. Dabney, S. Mohamed, B. Lakshminarayanan, S. Hoyer & R. Munos. “The Cramer Distance as a Solution fo Biased Wasserstein
Gradients”. arXiv:1705.10743.


https://arxiv.org/abs/1705.10743
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Cramér GANs
Bias in sample gradient estimates

Wasserstein KL Cramer

Batch Size: 1

Batch Size: 2

Wasserstein Distance

Full Distribution
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If a divergence doesn’'t possess (U) then minimizing it with
stochastic gradient descent may not converge, or it may
converge to the wrong minimum!'él,

Images above show the learning curves of GANs training
with  (U)-losses (KL and Cramér distances) and with
Wasserstein metric. For this one you can see how the batch
size choice affects the minimum searchlél,

[16] M. G. Bellemare, |. Danihelka, W. Dabney, S. Mohamed, B. Lakshminarayanan, S. Hoyer & R. Munos. “The Cramer Distance as a Solution fo Biased Wasserstein
Gradients”. arXiv:1705.10743.


https://arxiv.org/abs/1705.10743
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Cramér GANs
Stability and diversity

The energy distance ¢ is a nafural extension of the Cramér
distance to the multivariate caselldl,

Starting from ¢, we can define a loss
function that reproduces the minimax
two-player game thanks to an
imperfect critic function similar to the
Wasserstein one.

2_
10 = = = = WGAN-GP

s Cramer GAN Nu
= = = = Cramer GAN IV,

WGAN-GP N, =1
N, =5

QU =

Woasserstein Distance

The Cramér GAN leads to more stable
learning and increased diversity in the

9.
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[16] M. G. Bellemare, |. Danihelka, W. Dabney, S. Mohamed, B. Lakshminarayanan, S. Hoyer & R. Munos. “The Cramer Distance as a Solution fo Biased Wasserstein
Gradients”. arXiv:1705.10743.


https://arxiv.org/abs/1705.10743
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Conclusion

GANs offer a generative model based on a minimax
game not requiring inference or likelihood calculation.

Training GANs is very hard because of mode collapse
and instability caused by disjoint supports.

Wasserstein metric produces a continuous loss function
even though disjoint supports.

WGANs solve the zero-gradient problem substituting
discriminator with the critic function that can’t saturate.

Wasserstein metric is an ideal divergence but it doesn't
have unbiased sample gradients.

Cramér distance is an ideal divergence with unbiased
sample gradients.

Cramér GANs offer a stable-training solution fo
reproduce high-dimensional spaces.

18 of 18
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Generative Adversarial Nets
Mathematical notation

For the variables we have:

= X -real data space

= © ~ P.-real data density

Z - latent space

« 2 ~ P, _latent variable density

» Gy: Z— X -map to data space
Gy(z) ~ P, - generated data density

For the models we have:
= D(x)- probability that sample came from data
" min log(1 — D(G(z))) - maximize discriminator mistakell]

[1] 1. J. Goodfellow et al.. “Generative Adversarial Nets”. arXiv:1406.2661.


https://arxiv.org/abs/1406.2661
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Generative Adversarial Nets
Optimal discriminator

Solving the minimax game with respect to D, we obtain

max V(D,G)=V(D" G)

where D* indicates the optimal discriminator:

o ()
P = )

It's easily to demonstrate that V(D*,G) is related to the
Jensen-Shannon divergence:

V(D*,G) = —logd +2- JS(B||P,)
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Generative Adversarial Nets
Proof optimal discriminator

Recalling the definition of V(D,G)
V(D,G) = Eqgp log D(z)] + E.p [log(1 — D(G(2)))]

we have
V(D,G) = / pr(2) log(D(x)) da+ / p-(2) log(1-D(G(2))) d=
= [ Ip@) to8(D(@) + py(2) g1 ~ D@ dr = [ v(D,G) e

Obviously if follows that max V(D,G) = max v(D,G).

It's easy to see that it occurs for D*:

pr()
Pr(x) + py(x)

D*(x) =
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Generative Adversarial Nets
Proof Jensen-Shannon divergence

Subsisting D™ into the definition of V(D,G) we obtain
V(D" G) = Eyp, [log D*(2)] + E-p, [log(1 — D*(G(2)))]
= Eyp, [log D*(2)] 4 Epnp,[log(1 — D*(x)),

]|
=E,.p |log +E,.p, |log
" [ pe(x) + py(2) "

= —2log2 + KL(P,||P4) + KL(P,| Pa)

Py(2) ]

Pr(2) =+ py(2)

where P, is a sort of average distribution:
_ B+ Pg
2

Recalling the definition of Jensen-Shannon divergence

Py

V(D*,G) = —logd+2-JS(P||P,)
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Training GANs
Perfect discriminator

Empirically, if we train D fill convergence, the JS divergence
between P, and P, is maxed out. The only way this can
happen is if the supports of distributions are disjoint or lie in
low dimensional manifolds. In these hypothesis we can
demonstrate that a perfect discriminator always exists.

PERFECT DISCRIMINATOR
D:X —[0,1]
P[D(z) =1 =1
FylD(z) =0] =1

A perfect discriminator has zero gradient almost everywhere
on the union of sets containing P, and P, supports!tl.

[14] M. Arjovsky & L. Bottou. “Towards Principled Methods for Training Generative Adversarial Networks”. arXiv:1701.04862.


https://arxiv.org/abs/1701.04862
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Wasserstein GANs
Meaningful loss metric

Wasserstein estimate

The figures represents the first example, in GAN
literature, where the loss of the GAN shows
properﬁes Of Convergence in 'I'roining Cur\/eS. 'Oo 100‘000 200600 300600 4oolooo soolooo 600000

Generator iterations

Top-down figures: [ oceav]

= The generator is a MLP with 4 hidden layers
and 512 units at each layer. The loss decreases

consistently as training progresses and sample | '
quality increases.

= The generator is a standard DCGAN. The loss

. L L L L
0 100000 200000 300000 400000 500000 600000

decreases quickly and sample quality
increases as well. ‘ ' [ wromro)

= Both the generator and the discriminator are
MLPs with high learning rates (training failed).
The loss is constant and samples are constant
as welll?d],

10

Wasserstein estimate

w
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Generator iterations

[15] M. Arjovsky, S. Chintala & L. Bottou. "Wasserstein Generative Adversarial Networks”. arXiv:1701.07875.


https://arxiv.org/abs/1701.07875
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Wasserstein GANs

Experiment
\
KDE . p
Standard GAN
. \ '
Samples ‘ ‘ ’
» 4 L L . . .
KDE . ’ r . .
. »
Unrolled GAN .
steps =5
Samples ‘
KDE .
-
Wasserstein GAN
N_critic=5

Samples ‘

Epoch 0 Epoch 1 Epoch 5§ Epoch 10 Epoch 20 Epoch 50  Epoch 100

Consider a 2D mixture of 8 Gaussians arranged in a circle. Looking
to WGAN output, we can note how it tends to learn to match low-
dimensional structure of the data, before zooming in on specific
bumps of the true densityl!2l,

[15] M. Arjovsky, S. Chintala & L. Bottou. "Wasserstein Generative Adversarial Networks”. arXiv:1701.07875.


https://arxiv.org/abs/1701.07875
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Cramér GANs
ldeal divergence

Consider a divergence d, and for two random variables
(X,Y) with distribution (P,Q) write d(P,Q) = d(X,Y). So, we can
say that d is an ideal divergencel's! if

1) dis scale sensitive: d(cX,cY) < |c]?d(X,Y)

2) d is sum invariant: dA+ X, A+Y)<dX,Y)

As we have seen, another useful property for loss function is
the unbiased sample gradients ['¢]

E.,,~P [Ved (ﬁm, Qeﬂ = Vyd(P, Qp)

where with F, we indicate every function absolutely
contfinuous with gradient norm less than one.

[16] M. G. Bellemare, |. Danihelka, W. Dabney, S. Mohamed, B. Lakshminarayanan, S. Hoyer & R. Munos. “The Cramer Distance as a Solution fo Biased Wasserstein
Gradients”. arXiv:1705.10743.
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