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GANs[1] are a powerful class of generative models based on

simultaneous training of two neural networks:

▪ Generator network (G) that produces synthetic data

given some noise source;

▪ Discriminator network (D) that distinguishes generator’s

output from true data[2].

Generative Adversarial Nets
Introduction

We want that D to optimally discriminate on the origin of the

two samples. Simultaneously the training procedure for G is

to maximize the probability of D making a mistake. This

framework corresponds to a minimax two-player game[1].
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[1] I.J. Goodfellow et al.. “Generative Adversarial Nets”. arXiv:1406.2661.
[2] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin & A. Courville. “Improved Training of Wasserstein GANs”. arXiv:1704.00028.

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1704.00028v3


Generative Adversarial Nets
Application in Computer Vision

GANs are widely used as generative image model thanks to

its capacity in reproducing highly faithful and diverse

images with models learned directly from data[3].

[3] A. Brock, J. Donahue & K. Simonyan. “Large Scale GAN Training for High Fidelity Natural Image Synthesis”. arXiv:1809.11096.
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Generative Adversarial Nets
Application in Physics

The extreme scalability of deep learning

based models makes them perfect for

application in Physics.

GANs natural propensity for image

generation makes you immediately think

of calorimeter response[4] or hadronic jet

reconstruction[5], but there is no shortage

of application in other science areas,

such as Astrophysics[6, 7], Condensed

Matter Physics[8] or Oncology[9].

[4] M. Paganini, L. de Oliveira & B. Nachman. “CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative
Adversarial Networks”. arXiv:1712.10321.
[5] P. Musella & F. Pandolfi. “Fast and accurate simulation of particle detectors using generative adversarial networks”. arXiv:1805.00850.
[6] K. Schawinski, Ce Zhang, H. Zhang, L. Fowler & G.K. Santhanam. “Generative Adversarial Networks recover features in astrophysical images of galaxies beyond the
deconvolution limit”. arXiv:1702.00403.
[7] M. Erdmann, L. Geiger, J. Glombitza & D. Schmidt. “Generating and refining particle detector simulations using the Wasserstein distance in adversarial networks”.
arXiv:1802.03325.
[8] L. Mosser, O. Dubrule & M.J. Blunt. “Reconstruction of three-dimensional porous media using generative adversarial neural networks”. arXiv:1704.03225.
[9] A. Kadurin, A. Aliper, A. Kazennov, P. Mamoshina, Q. Vanhaelen, K. Khrabrov & A. Zhavoronkov. “The cornucopia of meaningful leads: Applying deep adversarial
autoencoders for new molecule development in oncology”. Oncotarget.14073.
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Generative Adversarial Nets
Application to particle identification

[10] G. Sassoli & L. Anderlini. “Generative Adversarial Networks for Fast Simulation of MuonID”. Machine Learning @ INFN Firenze.
[11] A. Maevskiy, D. Derkach, N. Kazeev, A. Ustyuzhanin, M. Artemev & L. Anderlini. “Fast Data-Driven Simulation of Cherenkov Detectors Using Generative Adversarial
Networks”. arXiv:1905.11825.
[12] LHCb Collaboration. “Performance of the Lamarr Prototype: the ultra-fast simulation option integrated in the LHCb simulation framework”. LHCB-FIGURE-2019-017.

Going back to Particle Physics application, we are currently

working on the development of an ultra-fast simulation for

PID system in LHCb using GANs to generate high-level

reconstructed observables[10, 11].

Images above show the performance of the Lamarr

Prototype, an ultra-fast simulation option developed for the

LHCb Experiment[12].
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Generative Adversarial Nets
Minimax two-player game

Defining the function V(D,G) as follows

the minimax game can be written in this form:

A unique solution exists, with G recovering the training data

distribution and D equal to ½ everywhere[1].

[1] I. J. Goodfellow et al.. “Generative Adversarial Nets”. arXiv:1406.2661.
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Generative Adversarial Nets
Pedagogical explanation

a) Minimax game near convergence: Pg is similar to Pr and D is a partially
accurate classifier.

b) D is trained to discriminate samples from data, converging to optimality.
c) After an update of G, gradient of D has guided G(z) to flow to region that

are more likely to be classified as data.
d) After several steps of training, they will reach a point at witch both

cannot improve because the discriminator is unable to differentiate
between the two distributions[1].

a b c d

[1] I. J. Goodfellow et al.. “Generative Adversarial Nets”. arXiv:1406.2661.
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Generative Adversarial Nets
Jensen-Shannon divergence

Solving the minimax game corresponds to minimize the

Jensen-Shannon divergence between the real data

distribution Pr and the generator’s distribution Pg.

By varying NN parameters θ, we can change the map Gθ

to data space and make Pg close to the real data

distribution. It corresponds to minimize JS divergence that

goes to zero for equal distributions.

GANs take a radically different approach compared to

other deep generative model not requiring inference or

explicit calculation of the data likelihood[13].

[13] L. Metz, B. Poole, D. Pfau & J. Sohl-Dickstein. “Unrolled Generative Adversarial Networks”. arXiv:1611.02163.
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Training GANs
Problems

GANs suffer from many issues, particularly during training:

▪ generator collapsing to produce only a single sample or

a small family of very similar samples;

▪ generator and discriminator oscillating during training

rather than converging to a fixed point;

▪ if imbalance between the two agents occurs, the system

doesn’t learn[13].

In theory, although minimax game corresponds to minimize

JS divergence when the discriminator is optimal, training it till

optimality and then doing gradient steps on θ doesn’t work!

In practise, as the discriminator gets better, the updates to

the generator gets consistently worse[14].

[13] L. Metz, B. Poole, D. Pfau & J. Sohl-Dickstein. “Unrolled Generative Adversarial Networks”. arXiv:1611.02163.
[14] M. Arjovsky & L. Bottou. “Towards Principled Methods for Training Generative Adversarial Networks”. arXiv:1701.04862.
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Training GANs
Vanishing gradient

Typically, the divergences which GANs minimize are not

continuous with respect to generator’s parameters θ[2]. This

allows the existence of the perfect discriminator D* for

which the gradient on the generator vanishes. If we consider

an approximation D that distances ε from D*, we can prove

what follows:

As our discriminator gets better, the gradient of the

generator vanishes. In other words, either our updates to the

discriminator will be inaccurate, or they will vanish[14].

[2] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin & A. Courville. “Improved Training of Wasserstein GANs”. arXiv:1704.00028.
[14] M. Arjovsky & L. Bottou. “Towards Principled Methods for Training Generative Adversarial Networks”. arXiv:1701.04862.
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Training GANs
Noise insertion

There is something we can do to break our gradient

problem: adding continuous noise to both discriminator and

generator. This move allows to learn thanks to non-zero

gradient of the generator. However, it’s now proportional to

the gradient of noisy JS divergence:

This variant of JS divergence measures a similarity between

the two noisy distribution and isn’t an intrinsic measure of Pr

and Pg. Luckily, using Wasserstein metric we can solve this

problem[14].

[14] M. Arjovsky & L. Bottou. “Towards Principled Methods for Training Generative Adversarial Networks”. arXiv:1701.04862.
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Wasserstein GANs
Earth-Mover distance

[15] M. Arjovsky, S. Chintala & L. Bottou. “Wasserstein Generative Adversarial Networks”. arXiv:1701.07875.

The Earth-Mover distance induces the Wasserstein metric:

where with γ(x,y) we indicate every joint distribution whose

marginals are respectively Pr and Pg. The EM distance is the

cost of the optimal transport plan from x to y.

For EM distance, we can demonstrate that

▪ If Gθ is continuous in θ, so is W(Pr,Pθ);

▪ If Gθ is locally Lipschitz and continuous, the W(Pr,Pθ) is

continuous e.w., and differentiable almost e.w.;

▪ JS and KL divergences don’t have these properties[15].
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Wasserstein GANs
Wasserstein loss

The Earth-Mover distance can be defined also as:

where the supremum is over all the 1-Lipschitz functions f.

Considering the K-Lipschitz family {fw}, then we end up with

K-times EM distance.

In WGAN context, the discriminative model corresponds to

finding the function f that maximize the previous relation.

Simultaneously, we want to minimize the EM distance with

respect to θ for the distributions convergence[15].

[15] M. Arjovsky, S. Chintala & L. Bottou. “Wasserstein Generative Adversarial Networks”. arXiv:1701.07875.
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Wasserstein GANs
Critic function

Wasserstein Generative Adversar ial Networks

Figure 2: Different methods learning a mixture of 8 gaussians spread in a circle. WGAN is able to learn the distribution without mode
collapse. An interesting fact is that the WGAN (much like the Wasserstein distance) seems to capture first the low dimensional structure
of thedata (theapproximate circle) beforematching thespecific bumps in thedensity. Green: KDE plots. Blue: samples fromthemodel.

Figure 3: Optimal discriminator and critic when learning to dif-
ferentiate two Gaussians. As we can see, the traditional GAN
discriminator saturates and results in vanishing gradients. Our
WGAN critic provides very clean gradients on all parts of the
space.

The fact that the EM distance is continuous and differen-

tiable a.e. means that we can (and should) train the critic

till optimality. The argument is simple, the more we train

the critic, the more reliable gradient of the Wasserstein we

get, which is actually useful by the fact that Wasserstein

is differentiable almost everywhere. For the JS, as the dis-

criminator gets better the gradients get more reliable but

the true gradient is 0 since the JS is locally saturated and

we get vanishing gradients, as can be seen in Figure 1 of

this paper and Theorem 2.4 of (Arjovsky & Bottou, 2017).

In Figure 3 we show a proof of concept of this, where we

train aGAN discriminator and aWGAN critic till optimal-

ity. The discriminator learns very quickly to distinguish

between fakeand real, and asexpected providesno reliable

gradient information. The critic, however, can’ t saturate,

and converges to a linear function that gives remarkably

clean gradients everywhere. The fact that we constrain the

weights limits the possible growth of the function to be at

most linear in different parts of the space, forcing the opti-

mal critic to have this behaviour.

Perhaps more importantly, the fact that we can train the

critic till optimality makes it impossible to collapse modes

when we do. This is due to the fact that mode collapse

comes from the fact that the optimal generator for a fixed

discriminator is a sum of deltas on the points the discrimi-

nator assigns the highest values, as observed by (Goodfel-

low et al., 2014) and highlighted in (Metz et al., 2016).

In the following section wedisplay thepractical benefitsof

our new algorithm, and weprovidean in-depth comparison

of its behaviour and that of traditional GANs.

Typically, WGAN solves the minimax game with the critic

function (fw) that can approximate the problem up to a

scaling factor.

The fact that the EM distance is

continuous e.w. and differentiable

almost e.w. means that we can train

the critic till optimality.

In the figure, we can see the original

GAN discriminator saturates and results

in vanishing gradients. The critic,

however, can’t saturate (K-Lipschitz),

and converges to a linear function[15].

[15] M. Arjovsky, S. Chintala & L. Bottou. “Wasserstein Generative Adversarial Networks”. arXiv:1701.07875.
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Cramér GANs
Unbiased sample gradients

[16] M. G. Bellemare, I. Danihelka, W. Dabney, S. Mohamed, B. Lakshminarayanan, S. Hoyer & R. Munos. “The Cramer Distance as a Solution to Biased Wasserstein
Gradients”. arXiv:1705.10743.
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Most of loss functions used in machine learning are

distances d, as in the case of Wasserstein metric. A crucial

characteristic of this kind of loss is the unbiased sample

gradients (U) notion owning[16]:

Wasserstein metric is an ideal divergence[16], but it doesn’t

have (U). So, we need a distance that not only has the

same appealing properties of Wasserstein metric but also

provides us with (U): the Cramér distance.

https://arxiv.org/abs/1705.10743


Cramér GANs
Bias in sample gradient estimates 

[16] M. G. Bellemare, I. Danihelka, W. Dabney, S. Mohamed, B. Lakshminarayanan, S. Hoyer & R. Munos. “The Cramer Distance as a Solution to Biased Wasserstein
Gradients”. arXiv:1705.10743.
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If a divergence doesn’t possess (U) then minimizing it with

stochastic gradient descent may not converge, or it may

converge to the wrong minimum[16].

Images above show the learning curves of GANs training

with (U)-losses (KL and Cramér distances) and with

Wasserstein metric. For this one you can see how the batch

size choice affects the minimum search[16].

https://arxiv.org/abs/1705.10743


Cramér GANs
Stability and diversity

[16] M. G. Bellemare, I. Danihelka, W. Dabney, S. Mohamed, B. Lakshminarayanan, S. Hoyer & R. Munos. “The Cramer Distance as a Solution to Biased Wasserstein
Gradients”. arXiv:1705.10743.
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The energy distance ε is a natural extension of the Cramér

distance to the multivariate case[16].

Starting from ε, we can define a loss

function that reproduces the minimax

two-player game thanks to an

imperfect critic function similar to the

Wasserstein one.

The Cramér GAN leads to more stable

learning and increased diversity in the

generated samples[16].

https://arxiv.org/abs/1705.10743


▪ GANs offer a generative model based on a minimax

game not requiring inference or likelihood calculation.

▪ Training GANs is very hard because of mode collapse

and instability caused by disjoint supports.

▪ Wasserstein metric produces a continuous loss function
even though disjoint supports.

▪ WGANs solve the zero-gradient problem substituting

discriminator with the critic function that can’t saturate.

▪ Wasserstein metric is an ideal divergence but it doesn’t

have unbiased sample gradients.

▪ Cramér distance is an ideal divergence with unbiased
sample gradients.

▪ Cramér GANs offer a stable-training solution to

reproduce high-dimensional spaces.

Conclusion
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Generative Adversarial Nets
Mathematical notation

For the variables we have:

▪ - real data space

▪ - real data density

▪ - latent space

▪ - latent variable density

▪ - map to data space

▪ - generated data density

For the models we have:

▪ - probability that sample came from data

▪ - maximize discriminator mistake[1]

[1] I. J. Goodfellow et al.. “Generative Adversarial Nets”. arXiv:1406.2661.
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Generative Adversarial Nets
Optimal discriminator

Solving the minimax game with respect to D, we obtain

where D* indicates the optimal discriminator:

It’s easily to demonstrate that V(D*,G) is related to the

Jensen-Shannon divergence:

Matteo Barbetti
03.02.2020



Generative Adversarial Nets
Proof optimal discriminator

Recalling the definition of V(D,G)

we have

Obviously it follows that .

It’s easy to see that it occurs for D*:

Matteo Barbetti
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Generative Adversarial Nets
Proof Jensen-Shannon divergence

Subsisting D* into the definition of V(D,G) we obtain

where PA is a sort of average distribution:

Recalling the definition of Jensen-Shannon divergence

Matteo Barbetti
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Training GANs
Perfect discriminator

Empirically, if we train D till convergence, the JS divergence

between Pr and Pg is maxed out. The only way this can

happen is if the supports of distributions are disjoint or lie in

low dimensional manifolds. In these hypothesis we can

demonstrate that a perfect discriminator always exists.

PERFECT DISCRIMINATOR

A perfect discriminator has zero gradient almost everywhere

on the union of sets containing Pr and Pg supports[14].

[14] M. Arjovsky & L. Bottou. “Towards Principled Methods for Training Generative Adversarial Networks”. arXiv:1701.04862.
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Wasserstein GANs
Meaningful loss metric

Wasserstein Generative Adversar ial Networks

Figure 4: Training curves and samples at different stages of training. We can see a clear correlation between lower error and better
sample quality. Upper left: the generator is an MLP with 4 hidden layers and 512 units at each layer. The loss decreases constistently
as training progresses and sample quality increases. Upper right: the generator is a standard DCGAN. The loss decreases quickly
and sample quality increases as well. In both upper plots the critic is a DCGAN without the sigmoid so losses can be subjected to
comparison. Lower half: both the generator and the discriminator are MLPs with substantially high learning rates (so training failed).
Loss is constant and samples are constant as well. The training curves were passed through a median filter for visualization purposes.

4. Empir ical Results

We run experiments on image generation using our

Wasserstein-GAN algorithm and show that there are sig-

nificant practical benefits to using it over the formulation

used in standard GANs. Weclaim two main benefits:

• a meaningful loss metric that correlates with the gen-

erator’s convergence and sample quality

• improved stability of the optimization process

4.1. Mixtures of Gaussians

In (Metz et al., 2016) the authors presented a simple mix-

ture of Gaussians experiments that served a very specific

purpose. In this mixture, the mode collapse problem of

GANs is easy to visualize, since a normal GAN would ro-

tate between the different modes of the mixture, and fail

to capture the whole distribution. In 2 we show how our

WGAN algorithm approximately finds the correct distribu-

tion, without any mode collapse.

An interesting thing is that the WGAN first seems to learn

to match the low-dimensional structure of the data (the ap-

proximate circle), before zooming in on thespecific bumps

of the true density. Similar to the Wasserstein distance, it

looks like WGAN gives more importance to matching the

low dimensional supports rather than thespecific ratios be-

tween the densities.

4.2. Exper imental Procedure for Image Generation

We run experiments on image generation. The target dis-

tribution to learn is the LSUN-Bedrooms dataset (Yu et al.,

2015) – acollection of natural images of indoor bedrooms.

Our baseline comparison isDCGAN (Radford et al., 2015),

a GAN with a convolutional architecture trained with the

standard GAN procedure using the− logD trick (Goodfel-

low et al., 2014). Thegenerated samples are 3-channel im-

ages of 64x64 pixels in size. We use the hyper-parameters

specified in Algorithm 1 for all of our experiments.

4.3. Meaningful loss metr ic

Because theWGAN algorithm attempts to train thecritic f

(lines 2–8 in Algorithm 1) relatively well before each gen-

erator update (line 10 in Algorithm 1), the loss function at

this point is an estimate of the EM distance, up to constant

factors related to the way we constrain the Lipschitz con-

stant of f .

Our first experiment illustrates how this estimate correlates

well with the quality of the generated samples. Besides

the convolutional DCGAN architecture, we also ran exper-

imentswherewereplacethegenerator or both thegenerator

and thecritic by 4-layer ReLU-MLPwith 512 hidden units.

Figure 4 plots the evolution of the WGAN estimate (3) of

the EM distance during WGAN training for all three archi-

tectures. The plots clearly show that these curves correlate
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(lines 2–8 in Algorithm 1) relatively well before each gen-

erator update (line 10 in Algorithm 1), the loss function at

this point is an estimate of the EM distance, up to constant

factors related to the way we constrain the Lipschitz con-

stant of f .

Our first experiment illustrates how this estimate correlates

well with the quality of the generated samples. Besides

the convolutional DCGAN architecture, we also ran exper-

imentswherewereplacethegenerator or both thegenerator

and thecritic by 4-layer ReLU-MLPwith 512 hidden units.

Figure 4 plots the evolution of the WGAN estimate (3) of

the EM distance during WGAN training for all three archi-

tectures. The plots clearly show that these curves correlate

The figures represents the first example, in GAN

literature, where the loss of the GAN shows

properties of convergence in training curves.

Top-down figures:

▪ The generator is a MLP with 4 hidden layers
and 512 units at each layer. The loss decreases

consistently as training progresses and sample

quality increases.

▪ The generator is a standard DCGAN. The loss
decreases quickly and sample quality

increases as well.

▪ Both the generator and the discriminator are

MLPs with high learning rates (training failed).
The loss is constant and samples are constant

as well[15].

[15] M. Arjovsky, S. Chintala & L. Bottou. “Wasserstein Generative Adversarial Networks”. arXiv:1701.07875.
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Wasserstein Generative Adversar ial Networks

Figure 2: Different methods learning a mixture of 8 gaussians spread in a circle. WGAN is able to learn the distribution without mode
collapse. An interesting fact is that the WGAN (much like the Wasserstein distance) seems to capturefirst the low dimensional structure
of thedata (theapproximate circle) beforematching thespecific bumps in thedensity. Green: KDE plots. Blue: samples fromthemodel.

Figure 3: Optimal discriminator and critic when learning to dif-
ferentiate two Gaussians. As we can see, the traditional GAN
discriminator saturates and results in vanishing gradients. Our
WGAN critic provides very clean gradients on all parts of the
space.

The fact that the EM distance is continuous and differen-

tiable a.e. means that we can (and should) train the critic

till optimality. The argument is simple, the more we train

the critic, the more reliable gradient of the Wasserstein we

get, which is actually useful by the fact that Wasserstein

is differentiable almost everywhere. For the JS, as the dis-

criminator gets better the gradients get more reliable but

the true gradient is 0 since the JS is locally saturated and

we get vanishing gradients, as can be seen in Figure 1 of

this paper and Theorem 2.4 of (Arjovsky & Bottou, 2017).

In Figure 3 we show a proof of concept of this, where we

train aGAN discriminator and aWGAN critic till optimal-

ity. The discriminator learns very quickly to distinguish

between fakeand real, and asexpected providesno reliable

gradient information. The critic, however, can’ t saturate,

and converges to a linear function that gives remarkably

clean gradients everywhere. The fact that we constrain the

weights limits the possible growth of the function to be at

most linear in different parts of the space, forcing the opti-

mal critic to have this behaviour.

Perhaps more importantly, the fact that we can train the

critic till optimality makes it impossible to collapse modes

when we do. This is due to the fact that mode collapse

comes from the fact that the optimal generator for a fixed

discriminator is a sum of deltas on the points the discrimi-

nator assigns the highest values, as observed by (Goodfel-

low et al., 2014) and highlighted in (Metz et al., 2016).

In the following section wedisplay thepractical benefitsof

our new algorithm, and weprovidean in-depth comparison

of its behaviour and that of traditional GANs.

Consider a 2D mixture of 8 Gaussians arranged in a circle. Looking

to WGAN output, we can note how it tends to learn to match low-

dimensional structure of the data, before zooming in on specific
bumps of the true density[15].
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Consider a divergence d, and for two random variables

(X,Y) with distribution (P,Q) write d(P,Q) = d(X,Y). So, we can

say that d is an ideal divergence[16] if

1) d is scale sensitive:

2) d is sum invariant:

As we have seen, another useful property for loss function is

the unbiased sample gradients [16] :

where with F2 we indicate every function absolutely

continuous with gradient norm less than one.

https://arxiv.org/abs/1705.10743

