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Abstract

Thought-processes and certain typical mental phenomena are schematized into
exact mathematical definitions, in terms of a theory which, with the assumption
that learning is a relatively slow process, reduces to two sets of equations: “neuronic
equations”, with fixed coefficients, which determine the instantaneous behavior,
“mnemonic equations”, which determine the long-term behavior of a “model of the
brain” or “thinking machine”. A qualitative but rigorous discussion shows that this
machine exhibits, as a necessary consequence of the theory, many properties that
are typical of the living brain: including need to “sleep”, ability spontaneously to
form new ideas (patterns) which associate old ones, self-organization towards more
reliable operation, and many others. Future works will deal with the quantitative
solution of these equations and with concrete problems of construction—things
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— Some considerations

e In the Physics domain Artificial
Intelligence is just a buzzword
(recently resurrected for marketing

_ _ " purposes. Bureaucrats like it.) .
Machine Learning -~

e Deep learning is a subset(rather
. old stuff) of machine learning
Deep Neural Networks/ g .(became popular because of

Deep Learning > google).

Neural Networks

® Machine learning, data mining,.
KDD, and statistical pattern

Computing K / - -
infrastructures recognition are different "nuances

of the same stuff

K

® Fraunhofer FOKUS 8

® More than 100 new methods of ML
.+ tveryyear



Some Examples

Survey Volume Velocity | Variety
SDSS 50 TB 200 GB/day | Images multiband
Sloan Digital Sky Survey catalogues, spectra
GAIA 100 TB 40 GB/day Images, catalogues, spectra LsST
3.2 Gpixels camera
PANSTARRS 5PB 5 TB/day Images multiband,
Panoramic Survey Telescope (5 years) catalogues
and Rapid Response System
LSST 130 PB 10 TB/day Images multiband ,
Large Synoptic Survey (10 years) catalogues, multi-epoch
Telescope
SKA 3ZB 10 PB/day Radio images, multi-I
Square Kilometer Array (raw) multi-epoch
150 TB/day
(processed)

In all sciences 99.9% of the data will never be seen by
humans 4

Moscow, DAMDID 2017 |
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Modern sky surveys obtain ~ 10> — 10"° bytes of images,
catalogs ~ 10% — 10° objects (stars, galaxies, etc.),
and measure ~ 102 — 10° numbers (features) for each

Time series 100 per year
« Both data volumes and data rates grow exponentially, with a doubling time ~

1.5 years
— Even more important is the growth of data complexity



The observed parameter space (OPS) has exploded not only in size but

also in complexity

The OPS axes are defined by
the observable quantities

Spectrophotometric Astrometric

Domain Domain
Flux

F/AF

~
~
-
-

ut

Brightness At baselines
Angular N,
Resolutii
Morphological Time
Domain Domain

Every observation, included,

carves out a hypervolume in
the OPS

6
Moscow, DAMDID 2017



I e . AR T

Growth of

Martin Harwit

Perhnps the most remarkable aspect of the growth in our

understanding of the universe is that we understand
anything at all. Beyond the obvious regularities of the sea-
sons, the Assyrians noted, as early as 700 BC, that the
planets appeared to move in a complex semiregular pat-
tern and that solar eclipses were possible only at the new
moon, whereas lunar eclipses occurred only at the full
moon. But what did all that tell the ancients about the
structure of the universe?

Around 250 BC, the Greek natural philosopher
Aristarchus of Samos worked out the distance of the Moon
and its size. He proposed a method for determining the
Sunis distance, but he was able to conclude only that the
Sun was much farther away than the Moon and much
larger than Earth. That led him to postulate, 18 centuries
beftre Nicclaus Copernicus, that Earth revolves around
the Sun.!

Aristarchus’s theory was largely discredited, especially
by Claudius Ptolemaeus of Alexandria. Ptolemy’s Almog
which appeared in about 150 AD, dominated Wester:
tronomical thought for a millennium and a half. Ptolemy ar
gued that Earth could not be rotating. Rotation, he thought,
would throw anything not firmly attached off the surface,
and “animals and other weights would be left hanging in
the air.” Moreover, Earth's rotation would be so fast that
“never would a cloud be seen to move toward the cast.™

That sounds quaint today, but it wasn't illogical.
Ptolemy was a great scientist. The first lesson in astro-
physics, however, is that every cosmic phenumgnon is gov-
erned by competing effects—in this case, gravity, centrifu-
gal forces, and friction. Unless we know the order of
magnitude of each, we are likely (o draw wrong conclusions.

The observers L
‘When Copernicus revived the notion of a heliocentric sys-
tem inﬁ;ﬂ,j&wﬂzboﬂh no observational confirmation.
The ground for a final resolution had to be prepared by

[Ra i

&

Astrophysical Understanding

sought political refuge in Prague, Ke-
pler followed him. %&:it was not until
after Tycho's death that Kepler inher-
ited and began analyzing the data.’

One sees parallels to today's the-
orists impatiently ing to get an
early look at the data from the Wilkin-
son Microwave Anisotropy Probe's
mapping of the cosmic microwave background. The
data were, until just a few months ago, embargoed pend-
ing the publication of a full year's set of observations,* (See
Prysics Topay, April 2003, page 21.) As soon as the data
were released, new theoretical analyses began to appear
within days on the World Wide Web.

Kepler reduced Tycho’s data and arrived at his three
laws of planetary motio;

» The planets move in elliptical orbits—rather than in cir-
cles and epicycles.

» The rate at which a planet sweeps out area within its
orbital ellipse is constant.

» The periods of the planetary orbits increase as the %
power of their semimajor axes.

The last of these findings was the first guantitative rela-
tionship between two observational parameters in astron-
omy. It constituted what one would call a well-posed ques-
tion: Why does Kepler's third law hold?

With the advent of the astronomical spyglass in 1609
(the word telescope was not coined until the following
year), Galileo Galilei quickly discovered an extraordinary
new set of phenomena: mountains on the Moon, moons or-
biting Jupiter, and the moonlike phases of Venus. To
Galileo, those three observations meant that Earth is just
one of the planets, all of them orbiting the Sun. For him,
that clinched the Copernican theory. The Church, however,
forbade Galileo to teach the theory and eventually confined
him to house arrest until his death in 1642,

Why did it take until the 17th century for the great
discoveries of Kepler and Galileo to come about? Today' the
answer is clear. Tycho's precision instruments and the
Spyglzsls) i inv:irlned ind!-ml.ltmclli in ltggiand, a Wl&ﬂ.é“;
proved by Galileo and pointed at eavens, proy ob
servational data that fiad simply been unavailable before.

Although Tycho's i A be t
|

data oyer assembled, th
ties of the unaided eye, whi
Jupiter. Galileo

i e FrOM AR BT Al e

' Why to understand the OPS is
particularly important in science?

Because science is based on observations and
experiments.... and

The history of discoveries can be reconstructed in
terms of better coverage or better sampling of the
observed parameter Space

M. Harwit, Physics Today, 2003



e subtended by Schwarzschild radius of a solar mass seen across the Galaxy
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Pair-production absorption limit
Interstellar plasma absorption limit

ANGULAR RESOLUTION (radians)

M. Harwit, Physics Today,
2003

10"
WAVELENGTH (cm}

Age of the universe

> Supernova remnants (1939}
= Flare stars (1949)

1939 .

1959 = Pulsars (1968)

@ Gamma-ray bursters (1973)
@ Black hole accretion disks (1996)
A Rapid x-ray repeater ( 1996)

Where is the next methodological and
technological advance?
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In astronomy the MOST INTERSTING SCIENCE WILL COME FROM...

AP_CORR_FLUX <
B 3 z 5 >

| 2. Studying the temporal behavior of sources

4. Looking in the OPS for higher (than 3) dimensionality pattern
and trends

9
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A METHODOLOGICAL SHIFT IS TAKING PLACE IN ASTRONOMY and
in SCIENCES in general

The four legs of modern science
1. Experiment (ca. 3000 yrs)

2. Theory (few hundreds yrs) mathematical description,
theoretical models, analytical laws (e.g. Newton, Maxwell, etc.)

PARADIGM ] _
3. Simulations (few tens of yrs) Complex phenomena

4. Data-Intensive science (now!!!)

10
Moscow, DAMDID 2017



Physical, social, economic, biological laws are derived from data

patterns (empirical laws)
f(x,y,z) =0

No empirical law depends on more than 3 independent
parameters !!!

! . ! | | | : ! | | ! R
Non-Suicide Gun Death Rates
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20
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La legge dei gas ideali 2 @
—
Unendo le leggi di Boyle, Charles ¢ Avogadro si ha a
un'unica legge, approssimativamente valida per tutt | gas
PREDICTABLE CITIES o
PV=nRT Data from 360 US metropolitan areas show that metrics such as *
wages and crime scale in the same way with population size. GRS 1915+105 Log M<2 5
la costante R, costante dei gas, ha il medesimo valore per ogni 25 5<Log M<6
gas (ciod & «universaley). 20 . METRIC: v 6<Log M<7 T
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Physical, social, economic, biological laws are derived from data

patterns

f(x,y,z) =0

No empirical law depends on more than 3 independent

parameters

Non-Suicide Gun Death Rates

La legge dei gas ideali

Unendo e leggi di Boyle, Charles e Avogadro si ha
un'unica legge, pp ossimativamente valida per tutti i gas

PV nRT
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A simple universe...
or rather an
intrinsic human
bias ...

. affecting our
knowledge and our
understanding of the

physical laws
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2003-2009

2009-2019

superv.

Unsuperv.

SOME METHODS

i S/G separation

Yes

ANN, CNN

Galaxy properties
Morphology
Properties
SFR
Evolution

ANN, SVM, PPS; CNN, +many other

Spectral classification

ANN, SVM, RF

Image segmentation

ANN, GAN

Noise removal

SVM, ANN, CNN, GAN, SLTN + many

Photometric redshifts (galaxies)

SVM, ANN, RF, CNN, KNN, + many other

Variable objects

SVM, DT, ANN, RF, CNN + other

Stellar evolution models

ANN

' Outlier detection

ANN, RF, CNN + all

Search for AGN

SVM, ANN, CNN + many




Task 2003-2009 2009-2019 superv. Unsuperv. Notes (most used methods)

{ Solar activity yes yes

Galactic studies
Interstellar Medium GAME, ANN, GNG, DBSCAN,
Open clusters
Stellar associations

Planetary studies SVM, ANN, ADABOOST, CNN
Surface morph

Asteroids CNN

AEREAV (B
s Exoplanets DBSCAN, ANN

Gravitational lensing GAN, CNN

Dark matter GAN

Magnetic fields ANN

Instrumentation SVM, ANN, expert systems
Monitoring & control

Data reduction and data logs




e How to evaluate performances: statistical indicators are always
ambiguous (RMS; NMAD; SIMA; PIT; ROC, etc...) & need to be
selected and fine tuned on the datasets, methods, etc

How to evaluate effects of errors (i.e. PDFs?)? ML Methods don't
do it for free...

Not all features are significant for the task, hence the need to
reduce dimensionality (most relevant, all-relevant, Data Driven
Approach?)

Proper coverage of OPS (defines biases, systematic errors,
selection effects, etc....) hence: how to control biases in the training
3

Missing data are a problem (for us they are actually a double

roblem Iacl\(\‘gjmmeavs}urements or upper limits?)
; : "‘a'l';nci-’rrﬂnl&'ir Arirliare “‘\\lnrnnh 1~t-. annmahl




Photo-z as a template case of
supervised regression -

(i.e. the simplest possible Qasé‘in ML)
& More.than 220 papers in the last 10 years
7 =g AW i'* *. 5 " -
o Differént surveys’(almost all), many
", wavelengths
NJZRY 1 -

,_Q‘,

normalized flux / filter transmission

4000 5000 6000 7000 8000 9000 10000 11000 LR
Observed Wavelength (Angstroms) f #7

;‘?3,’ Di%fé'rént coverages of OPS
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E.g. Cavuoti, et al.,, MNRAS, 2016 on KiDS data
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a) 1D - 4 regions

V(d) =

— 0.5
['(5

. Figure shows how the volume of this hypersphere
| changes when the dimensionality increases:

Classifier performance



https://en.wikipedia.org/wiki/Volume_of_an_n-ball
https://en.wikipedia.org/wiki/Volume_of_an_n-ball
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T T — — ‘ Traditional (empirical) approach:
Brescia et al 2013, AplJ, 772, 140 ) . ( P ) app .
First selection of features based on expertise
e E—— — e Ce Trial and error on different combinationg

-
-l mag_Aper.2 mag_Aper_3 - th a erty .
and kron radiss

Hands Name of feature

AparMagd, AperMags

o speian b _ Hundreds of experiments
N — ¥ ¥ 1~ S— » Very demanding in terms of time

g photometry

t if the Hux

Table 6. Catastrophic outliers evaluation and comparison between the residual

Tdean| N Znorm ) and NMAD(Az ). The reported number of ohjects, for each

cross-matched catalog, is referred to the test sets only. Catastrophic outliers are defined as

objects where |Azprm| = 26 (AZnorm )

The standard deviation ¢geqn{ A Znorm) 15 calculated
after having removed the catastrophic outliers, i.e. on the data sample for which

A -n-prml = 20 (A Trorm :I

n. -jhj. o (AZnorm) T am. outliers

11431 0.15
1T8TE 0.11
0.11
0.087
0089




& pproach K F Polsterer et al., 2015)
R

= 341,055 combinations

(I’l I")I"

.
% Laurlng et al 2011
gTr,acﬂtio‘naI'feature selectipn

Best combination

u JLit "
model gmodel
°
L -f

. e » . . gpsf model

g prediction quality k=7 Z . _r

< ' . “psf " model

= .
3 |\ ~Z

= psf —model

. » 4
0.10 0.15 b T
Median Absolute Deviation 2 '



error diagram k=7

.. 585 features

MAD Az,
— RMS Az,

Level achieved with
human biases in
(i feature selection

E—

L 3

b
; o Cavsracieved-sy—

i machines alone (D?)
’ 0.10

il oos| *

5 10 15 20
l number of features

-

You hit a plateau at
10 features.

d Accuracy twice better

These 10 features do
not make sense to an
astronomer

(afterwards ... there
might be some
explanation)

Let us find the best combination

Upsy — Eperr
dered (z i } dered (l et )
dered (g o )» dered ( " od )
dered (rpsf )» dered (Zmod )

2 2

£ petr Fmodel

dered (r od ) dered (lmod )
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, data reduction and analysis) and to extract features
(m‘easures) optll‘mlsed for MLIAI -/

e
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:.,<‘_NN m GPU Imp

Iementatlon

2 d

Fpst = Tpetro
lpst — 13

]
lpst | <onoded

’psf."l::.;: .

Table 3. Summary of the scores obtained with the RF and DCMDN
models in the three experiments.

Exp Set # Features Mean RMSE NMAD
DR7a Classicio 10 -0024 0.163 0.051
Besy 4 0.023  0.163 0.080
Besty 10 .01 0.124 0.044
DCMDN 65536 0.020 0.145 0.043
DR7b Classicio 10 0.180 0.059
Best, 4 0.183 0.087
Be'Stm 10 0.145 0.050
DCMDN 65536 . 0.171 0.032
DR7+9 Classicq 10 0.0 0.207 0.073
Best, E 0.0 0.206 0.100
Best,, | 0.0 0.174 0.060
DCMDN 0.0 0.184 0.037

Notes. The DCMDN automatically extracted 65536 features for each
experiment. The resulling scores are also given.
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11

—{154.9nm

103.4nm
VI

An example of why these
features are relevant.

Feature importance of some
features in the Best10 set .
composed by magnitudes
from neighbouring bands.
The results are compared to
the classic features using PSF
magnitudes of the same
bands.

Based oh the characteristics
of the ugriz filters, the
wavelengths indicating the
start, centre, and end of the
overlapping regions ake used
to overplot the positions of

particular quasar emission
lines using Eq. (2).
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Feature selection - All relevant

Brescia et al. 2018 Aims at finding tall the features,
¢oLAB with carry useful information for a
1 I“h“"____ PHILAB (Parameter Handling investigation LABoratory) given problem
Based on two concepts: «shadow features» and Naive-LASSO regularization and exploiting Random Forest model as
importance computing engine.

#} SHADOW FEATURES represent the noisy versions of
the real ones and their calculated importance can be
used to estimate the relevance of the real features.

LASSO penalizes regression coefficients with an L;-norm
8§l penalty, shrinking many of them to zero. Features with
non-zero regression coefficients are “selected”.

Regularization in Machine Learning is a process of introducing
additional information to solve learning overfitting or to perform
Feature Selection in a sparse Parameter Space. The regularization
is a penalty term added to anyloss function L.

X

A shadow feature for each real one is introduced by @
randomly shuffling its values among the N samples of _;}
the given dataset. i

ming Y L(£(2)) + M orm(W)
i=1

4dra & Maehara 2016, Proceedings Qf NIPS 2016, Barcelona, Spain
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Masters et al., 2015, APJ .

Coll 8642, x= 17,y = 115 Cell #8088, x = 63, y = 119
Photo-z estimate: 1,188 Photo-z estmale: 0.595
# Objects in cell: 21 3 # Objects in oil: 15
. ; ®
.
.
1.0
Wavelength (wm)
G > Coll #8342, x = 17,y = 111 1 A Cell #6480, x = 40, y =86
A T Prolo-z stimate: 1,298 Photo-z estimate: 2.364
f : # Objects In cell: 19 # Objects in osil: 18 ®
1?& " B
il 5 B s - aun® ¥ ¥
i m‘ m
- - - 4 n
1.0 - 5 u . . 1.0
Wavelength (im) . ] . - Wavolangth (jam)
Cell # 2043, x = 18, y =27
Photo-z estmate: 0.760
2 Objects in cl: 9
-
Cell # 3051, x = 51, y =40
Photo-z estimate: 0,520
# Objects In cell: 23
1.0
Wavalangth (jam) by

CO*SIVI;OS atak(EUCLID.lSED) and Converted to' ‘pseudo-Euclid" photometric system:
8,1, ZYTH Spectroscoplc data from COSMOS master catalogue
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: " g *



0 10
r
\ = |
14ol- - -
bk
T
» -
)
120
T a
I =
! S
100 |-

. ..‘
80+

I

b
60
40|

k_ -

[ -

I - -
20‘» - & "

b -

| -
ol 1

1 . 1_

20 30
Cell Occupation
- T T T

40

50




Ly —alpha break
u-g at 2.5<z<3.0
g-r at 3<z<4
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: Most astronomical literature deals with

e Optically selected samples
e large spectroscopic knowledge bases

o More or less uniform coverage of OPS
e Negligible fraction of missing data

* Future panchromatic surveys will deal with

e Non optically selected samples (radio, X ray, etc.)
e Reduced spectroscopic knowledge bases
o Non uniform and incomplete coverage of parameter space
(very sparse)
o Spectroscopic KB extracted from different regions of the sky
(e.g. pencil beam surveys, etc.)
e Huge fraction of missing data




| The survey EMU - Evolutlonary Map of the Universe, to be performed with ASKAP will observe Ca.
70 million galaxies

Radio selected samples are dominated (ca 50%) by starburst and and high-z radio loud AGN
(Norris, 2011, 2013). These objects are usually faint and underrepresented in optically selected
samples.

| '3? The median redshift sample of EMU will be ca z=1.2, while most optically selected samples have
£+ median redshift at z=0.5/0.7

Small training sets

, : Poor coverage of OPS
2242 sources with optical counterparts (Sargent et al. 2010).

Strongly biased
757 soTest DATA: VLA-COSMOS 1.4 GHz sample Incomplete data

| form the “spectroscopic KB". (91 (XMM) + 158 (Chandra) X-ray




N 16 sets of experiments: .

Bright Traimeny, 4 3 g
RemborTroiming (combinations of...)

w /spec. redshift

_1. ' Luminosity biases (B or R)
+ Training on shallower sample
Bright'(50%) or Random

2 Depth (deep or Shallow)
+  Deep:train on deepest data available
e ] «. Shallow:: train on data at the same
Bright Training [ #*  depth of EMU

Random Traiming

w/spoc.redshift

3. - Radio fluxes (Y or N)
$ s Ir]clusion of the radio fluxes in the OPS

4.  X-ray AGN (Y or N) ;
: Included (not) in the training set




PHOTOZ FOR RADIO SURVEYS 11

Experiment Al B1 C1 D1 El F1 G1 H1 A2 B2 C2 D2 E2 F2 G2 H2
Code BDNY BDYY BDNN BDYN BSNY BSYY BSNN BSYN RDNY RDYY RDNN RDYN RSNY RSYY RSNN RSYN
Training set size 391 391 302 302 391 391 302 302 343 343 278 278 343 343 278 278
Max test set size 366 366 457 457 366 366 457 157 416 416 481 181 416 416 481 481
kNN N= 366 366 293 293 366 366 293 438 414 414 322 322 414 414 322 322
NMAD= 0.15 0.15 0.13 0.14 0.1 0.48 0.1 err 0.05 0.05 0.05 0.04 0.23 0.24 0.22 0.22
n= 56 58 58 59 31 95 28 95 18 18 11 11 49 52 49 52
B= 44 42 27 26 69 5 46 5 82 82 60 60 51 48 34 32
RF-JHU N= 366 366 438 438 366 366 438 414 114 467 467 414 414 167 467
NMAD= 0.11 0.12 0.12 0.12 43 0.45 err 0.07 0.07 0.07 0.07 0.09 0.09 0.1 0.1
n= 28 27 28 30 95 95 95 15 15 16 16 20 19 21 19
B= 72 73 69 67 5 5 5 85 85 82 82 80 81 77 79
RF-NA N= 366 366 293 293 366 366 293 293 414 114 322 322 114 414 322 322
NMAD= 0.13 0.12 0.16 0.17 0.11 0.09 0.12 0.12 0.07 0.07 0.06 0.06 0.13 0.13 0.11 0.1
n= 33 25 86 83 28 22 35 33 14 15 8 7 36 36 28 25
B= 67 75 9 11 72 78 12 43 86 85 62 62 64 64 48 50
MLPQNA N= 366 366 293 293 366 366 293 293 114 414 322 322 414 414 322 322
NMAD= 0.2 0.25 0.15 0.14 0.13 0.12 0.08 0.09 0.06 0.06 0.05 0.05 0.12 0.14 0.11 0.12
n= 80 88 36 31 40 40 22 27 17 19 14 13 36 38 27 32
p= 20 12 41 44 60 60 50 47 83 81 58 58 64 62 49 46
Le Phare N= 757 571 509 549 757 571 509 549
NMAD= 0.02 0.01 0.08 0.08 0.02 0.01 0.08 0.08
n= 5 3 22 23 5 3 22 23
8= 95 73 52 56 95 73 52 56

Table 3. Results of the 16 experiments. Line 2 of the header gives the code as described in §3: Bias (Bright/Random), IR Depth
(Deep/Shallow), Radio (Y/N), X-ray (Y/N). Column 1: method name; column 2: metric: N=number of redshifts estimated,
o=standard deviation of estimated-true, n=percentage of outliers, = overall success rate, expressed as a percentage, as defined
in the text.
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mentatldns), MLPQNA, LE-Phare (SED), BPZ



Le Phare: SED fitting

Makes use of full

COSMOS wavelength
coverage
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éommon to many (most) domains
« __different strategies to cope with it
—’\i ‘ 7l A > o .
1 but no clear cut, unique solution....

1 #‘11 i *2 k|
ViR iV & - Crowdsourcing
T ' S&mi- -supervised learning

Generatlve adversarial networks
S anSs "4 Active Learning
Dorhaln adaptatlon/transfer learning

.



Photometric Redshifts for X-ray selected Active Galactic . .
Nuclei in the eROSITA era Sample composed by ca. 7.000 sources in Stripe

82 with X ray counterpart (La Massa et al. 2017)

M. Brescia'*, M. Salvato?T, S. Cavuoti’**¥, T. T. Ananna®$, G. Riccio!,

S. M. LaMassa’, C. M. Urry® and G. Longo™*
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gure 1. Map of the original multi-wavelength coverage of Stripe 82X area discussed in A17. The total arca extends for ~ 2.5 in
sclination and 1207 in Right Ascension. The dots represent X-ray sources, respectively, from XMM-Newton AOL3 (red), AOLD {blue),
chival XMM-Newton =sources (yvellow) and Chandra sources (black). While standard photo-z are generated for the entire area (in red),
o sedoction of the best features discussed in the first part of the paper is obtained considering only the sources in the yellow area



Filter BAND DEPTH
SDSS & SDSS & SDSS & SDSS SDSS SDSS VHS

NOMINAL  BEST SDSS  “yng  jRac WISE VHS & IRAC VHS & WISE  IRAC & WISE
FUV 2199 — — — — — — — —
NUV 2199 — — — — — — — —
u 3122 2851 2854 2854 2%.54 2®.54 28,54 28,54 2854
5 2877 2020 2439 2420 24.39 24.39 24.20 24.20 24.20
r 2714 2325 23443 2320 2343 2343 23.25 23.25 234.25
i 2721 2235 2349 2264 2340 2245 2264 22.35 22.35
: 30,46 2242 2335 2246 2299 nA2 22.46 2242 22.08
J 24.74 2164 — 24 64 — — 21.64 21.64 2151
H 24.15 287 — 2287 — — 21.61 2287 21.61
K 22 60 2168 — 21 63 — — 21,63 21.63 21 63
Juk 2344 — — — — — — — —
Huk 22 69 — — — — — — — —
Kuk 2241 — — — — — - — —
CHI1.SPIES 2427 . — X — . — .
el 2 80 w82 - 21.64 N 21.06 - 2049
CH2.SPIES 22 88 — - ) — . — s
CHa SHELA 1 u 049t N 21.41% - 21.07 N 022
wi 21.16 207 — — — w71 — 2071 20,61
W2 20.74 2008 — — 063 — 20.63 20.59
Wi 18.20 T T — — — 15,11 — 18.11 18.04
Wi 16.15 1606 — — — 16.13 — 16.13 15.94
N. of sources o 2200 4855 4218 2203 3201 1620 2696 1380
E)‘,d Falrees 2933 1686 2ma 2218 1506 2160 1279 1935 1121
:/ F::'l‘:f,, 2351 1249 202 1644 1051 1619 48 1445 793
N. of sources
w/ Fy =101 15%) 1025 1483 1309 87 125 o8 1174 (5

ad e

Table 1. Summary table for depth, amount of sources and redshift coverage. The first column refers to the nominal depth of the entire
sample of rellable counterparts In Stripe 82X, as presented in A17. The following columns refer to the magnitudes reached in the varlous
experiments, Le., the faintest magnitude reported in the Stripe 82X catalogue for the varlous sub-samples for which the photo-z have
been computed. The wvalues In the column BEST represent the faintest magnitudes of the subsample of sources in the yellow arca of
Fig. 1, used for the features analysls performed with ®LAB, (Sec. 3.1). The bands marked with a — symbol have been discarded from
that specific experiment.



K 41.6%
ﬁurc importance  feature impaortance G b 12.4%
e FUV and NUV magnitudes and corresponding errors R-Z 11512‘ J-K 0‘“"2‘ CH1 b= 7.5%
from GALEX all-sky survey (Martin et al. 2005): G-l ' lg'f’"‘ U-cH1 0':"’:‘ W1 f== 7%
® u,g,r.1,z3DSS AUTO magnitudes and corresponding er- SI:‘I-CHZ "5(“3: :.g::; g:‘g U == 4.9%
rors from Fliri & Trujillo (2016); ot e 0':;;% 7 b= 3.9%
e J, H, K from VISTA (Irwin et al. 2004). As shown in ZCH o ) L ) = 3.6%
. v ) 1 4.24% RW2 0.33%
AlT7 additional data in Jyg Hyg Ky data from UKIDSS G-R 103%  K-CH1 0.33% W2 = 3.5%
(Lawrence et al. 2007) are available for the same area but K 3:"% R-W1 0:31% | p=3.4%
were not used in this paper; G-Z 3.03% U 0.30% H }=3.3%
e 3.6 and 4.5 pm magnitudes and corresponding errors W1 200%  U. 0.30% R f=3.2%
from IRAC. Here two complementary surveys are used: . 1.CH2 Lad%  G-W2 0.27% CH2 =3.1%
SPIES (Timlin et al. 2016) and SHELA (Papovich et al. H 1.81% G-.CH2 0.24%
2016). ((;ivcn the similnrit)'] of the two sur(vt-y:. we do not FS .VV Ith R-1 167% 1) 0.23% Figure 3. Results of the feature analysis performed with OLA!
differentiate sources belonging to one or another; PhiLab 1.CH1 L51%  CHi-W2 0.23% f.ﬁi'?f:ﬁ&“ii‘fm;'?ofﬁ'fﬂﬁi ;'Zs‘r":.,';.,',’,f"
e WI, W2, W3, W4 magnitudes and corresponding errors J 1L45% G 0.22%
from AIWISE (Wright et al. 2010). :'K :;’:: L%‘:{’l 8‘2}2
1 1.21% G-K 0.20%
w1 LI8% J-w1 0.20%
1-Z 1.08% H-W2 0.20%
Z 090% K-CH2 0.17%
H-W1 097% K-W2 0.16%
L K-W1 0.83% U-w1 0.16%
L Z-W2 083% ZJ 0.16%
! CH2-W1 077% UK 0.15%
. Z-CH2 068% R-CHI 0.14%
U-R 068% H-CH2 0.13%
U.2 0.62% CH 0.13%
G-W1 0.%% Z-H 0.13%
J-.CH1 0.54% U.H 0.12%
» * :;""'_'. ':."; 2:;:9 Z-K 0.52%  J-W2 0.08%
- 1-W2 0.%% LK 0.085%
0 1 2 3 4 5 J-H 0.4% RK 0.07%
Tapec Wi1-\W2 0.45% — —
Plgure 2. Redshift nn:;mgrlzu:;: distribution for the sources Tuble 2. Results of the feature analysis (percentages of esti-
with spectroscopéc redshift. e sources were pi d in 3 - H
A1 a4 e g 8 e . the parsmcte space sompone b consderog ll magaifudes sod
rmll)"pnscnu‘d in LaMassa ct al. (2019). They arc used as SpGCtrOSCOp'C KB colours available
additional blind test sample.




Due to different depths .... need to handle missing data

{i) SDSS, VHS, WISE & IRAC (sdssVWI)
(i) SDSS, VHS & WISE (sdssVW);

(iii) SDSS, VHS & IRAC (sdssV1):

{iv) SDSS & WISE (sdssW);

{v) SDSS & IRAC (sdssf):

{vi) SDSS & VHS (sdssV');

{vi1) SDSS.

Number of \bias|

SOUrces o T NMAD n
ALY 28 o066 02292 0.129 0.0=9 2707
sdss 27 00057 0.367 D.156% 0.129 33.48
widas\V 135 00357 0322 0211 0,149 41.48
wdaeW 144 00073 0288 0173 0,137 34.03
wias] 110 00119 0202 0184 0,163 40.91
s VW 111 059 0272 0167 0,143 33.33
ELETAN | 58 00343 0255 0.161 0116 32.76
wdes VW1 5 00298 0151 0152 0104 3200
MLPQNA zerped 229 00182 0270 0192 0154 38.43

L} I 1 1 l
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N 1163, 0y 0.067; 7: 16.8%
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" all statistical results for the new sample of 258 spectroscople redshifts presented in LaMassa et al. 2019,

Igure 5. Comparison between spectroscopse redshift and photo-z for the sources cut at the eROSITA flux and divided on the basis o
vallable photometric points. For comparison, the result from A17 Is reported in the lower right panel of the figure By comparing the
scuracy and the fractlon of outliers In every panel with the carresponding row In Table 8, we see that computing photo-z using only
DES for bright X-ray sources s not recommended.



MLPQNA TuMAD = 0.057; nw= 12.8
LePhare TamaD = 0,059; n=12.8
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Figure 6. Difference between spectrascopic redshift and photo-z
computed via MLPQNA and LePhare for the sub-sample of 1679
sources with SDSS, VHS, WISE and IRAC photometry. Sources
that are outliers for MLPOQNA (LePhare) are plot in cyan (or-
ange). For this sub-sample the accuracy and fraction of outliers
are very simlilar for the two methods. However, the majority of
the outliers are =uch only for one of the two algorithms
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Flgure 7. One-to-one comparson of accuracy for photo-x com-
puted via MLPQNA with different combinations of photometry.

For this plot only sources present in all the subsamples have ben
used.



Metaclassification: optimal combining of classifiers

Lightcurves
Features

External ; Archival Data DataiMadel
T /}\
Ensemble of Ensembles of Bayesian Neural “Supervised”
kN Ns Decusmn GEES Network Network SOM

Combiner (e.g., “Sleeping Expert” framework)

Final Classification
Exploring a variety of techniques for an optimal classification fusion:

Markov Logic Networks, Diffusion Maps, Multi-Arm Bandit,
Sleeping Expert...



| _e conclusu)ns on uperwsed methods

,% 55 gl B

If large annotated reliable data sets are available, all methods are

substantially equivalent (DL, RF, MLPQNA, K-NN, etc.)

o Need for extensive feature selection (different approaches substantially
equivalent)

o Differences are in the range of a few % which are usually negligible when
errors are properly taken into account

If data are heterogeneous (depth, coverage, etc.) or biased... methods matter

o DL substantially useless, RF or KNN outperformed by normal MLP's (better at
generalising ?)

o Handling biases and understanding results becomes the crucial part.

o Lots of work remains to be done to be able to apply these methods to future
surveys

The scientific exploitation of future large survey projects requires better
"annotated data"



nce and not a tool.

1nly"wr|tten ‘ 'thg_agalysis of data of different natire and DO

NYMEA NS

ro)o J\Teven a simple one) may take to a medium
"ars to be properly solved



Other communities (bioinformatics, geo-informatics, economic,
etc) are in the same situation.

DEEP LEARNING (CNN, AE, GAN; etc) is likely NOT THE
SOLUTION TO ANY OF THE ABOVE PROBLEMS (errors,

-
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