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Prologue
Optimal Bucket Order Problem: a novelty?

The optimal bucket order problem (Gionis et al., 2006; Ukkonen et al.,

2009; Kenkre et al., 2011; Aledo et al., 2017b) is a recent terminology for a
old problem: dealing with rank aggregation by allowing tied
ranking in the solution.

This problem was stated by Kemeny and Snell (1962) when defined the
median ranking.

For long time the term ‘preference rankings’ has been a
synonymous of permutations, tied rankings were interpreted as
indifference declaration.

A bucket order is ‘simply’ a tied ranking.
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Preference rankings in a nutshell

Preference data are generally expressed by either ratings data or
rank (or rankings, or preference rankings) data.

Both are data expressing individual’s preference over a set of
available alternatives.

Ratings data: please assign a score in a range from 1 to 10 to the
objects (sentences) A, B, C and D. The score 10 means ”I
completely agree”. The score 1 means ”I completely disagree”.

Rank data: Please place the objects A, B, C and D in order in such
a way that the resulting ordering reflects your preferences among
these objects.
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Type of rankings

When the subject assigns the integer values from 1 to n to all the
n items we have a complete (or full) ranking.

Item A B C D E F G H I L
Rank 4 9 7 1 2 5 3 10 8 6

When a judge ‘fails’ to distinguish between two or more items and
assigns to them the same integer number, we deal with tied (or
weak) rankings

Item A B C D E F G H I L
Rank 3 7 5 1 2 4 3 7 6 5

We have a partial ranking (or incomplete rankings) when judges
are asked to rank a subset of the entire set of objects (pick k out
of n), or when there are some missingness in the ranked items

Item A B C D E F G H I L
Rank 1 4 2 3
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Geometry of rankings (1)

It is widely accepted that the geometrical space of preference
rankings is the permutation polytope, which is the convex hull of a
finite set of points in Rn, in which the preference rankings are
represented on its vertices (Thompson, 1993; Marden, 1996; Heiser, 2004;

Heiser and D’Ambrosio, 2013; Alvo and Yu, 2014, ...).
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Just full rankings?

What about tied rankings? Just indifference declaration? Positive
statement of agreement?

Nowadays dealing with tied rankings is the rule rather than an
exception (ranking of Italian Universities, ranking of European Universities, ranking

of World Universities, ranking of the Netflix series, ranking of the Amazon items,.....).

Times have changed, data have changed, sometimes the universe
of the permutations is not enough.

Working with just full rankings can be a limitation in dealing with
a lot of real problems (‘we consider the corresponding (tied) ranking positions

as missing’,Jacques & Biernacki, C. (2014).

Learning from Preference Rankings



Introduction to preference rankings Introduction to the topic

Universe of rankings

The universe of rankings with n items is equal to the ordered Bell
number of n elements

Zn =
n∑

b=1

b!

{
n

b

}
,

where
{n
b

}
= 1

b!

∑b
i=0(−1)i

(b
i

)
(b − i)n indicates the Stirling

number of the second kind (the number of ways to partition a set
of n objects into b non-empty subsets). These b non-empty
subsets are sometimes called buckets, so tied rankings are also
known (in the computer science community) as bucket orders.
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Universe of rankings (2)

Cardinality of the universe of rankings containing ties for n = 1, . . . , 10. The columns
indicating the buckets (b) show the cardinality of the rankings of n items constrained
into b buckets. Last column shows the universe of rankings with n items

n \b 1 2 3 4 5 6 7 8 9 10 ... Zn

1 1 - - - - - - - - - - 1
2 1 2 - - - - - - - - - 3
3 1 6 6 - - - - - - - - 13
4 1 14 36 24 - - - - - - - 75
5 1 30 150 240 120 - - - - - - 541
6 1 62 540 1,560 1,800 720 - - - - - 4,683
7 1 126 1,806 8,400 16,800 15,120 5,040 - - - - 47,293
8 1 254 5,796 40,824 126,000 191,520 141,120 40,320 - - - 545,835
9 1 510 18,150 186,480 834,120 1,905,120 2,328,480 1,451,520 362,880 - - 7,087,261

10 1 1,022 955,980 818,520 5,103,000 16,435,440 29,635,200 30,240,000 16,329,600 3,628,800 - 102,247,563
... ... ... ... ... ... ... ... ... ... ... ... ...
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Geometry of rankings (2)

Starting from the study of the permutation structure of partial (tied) rankings (with a
pre-specified pattern of ties) made by Thompson (1993), Heiser and D’Ambrosio
(2013) defined the following integrated graph of all full and partial (tied) rankings.
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Overview of statistical methods and models

Statistical methods and models for the analysis of preference rankings
can be distinguished in (Marden, 1996):

methods devoted to find the central ranking(de Borda, 1781; Condorcet,

1785; Mallows, 1957, ,...);

methods based on badness-of-fit functions describing the multidimensional
structure of rank data (Multidimensional Scaling, Unfolding, Vector model,

Preference mapping,... Carroll 1972; Heiser and De Leeuw 1981; Meulman et al.

2004; Coombs 1950, 1964; Busing et al. 2005, 2010);

methods based on probabilistic models, modeling either the ranking
process or the population of rankers (distance-based models, multistage

models,... Thurstone 1927; Bradley and Terry 1952; Mallows 1957; Fligner and

Verducci 1986, 1988; Critchlow et al. 1991);

methods that model the population of rankers assume heterogeneity
among the judges with the goal to identify homogeneous sub-populations
(mixtures of distance-based models, sorting insertion rank models, K-median

cluster component analysis,... Croon 1989; Murphy and Martin 2003; Gormley

and Murphy 2008a; Heiser and D’Ambrosio 2014; D’Ambrosio and Heiser 2018).
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Overview of statistical methods and models (with
covariates)

Among the proposals that include covariates, the majority of them
is based on:

generalized linear models (Chapman and Staelin, 1982; Dittrich et al.,

1998, 2000; Böckenholt, 2001; Gormley and Murphy, 2008b);

recursive partitioning methods (D’Ambrosio, 2008; Cheng et al., 2009;

Strobl et al., 2009; Lee and Yu, 2010; D’Ambrosio and Heiser, 2016; Plaia and

Sciandra, 2017).
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Consensus Ranking

What is the common thread that combines all the methods and
models dealing with preference rankings?

The detection of the so-called consensus ranking.

Given a series of judgments about a set of n objects by a group of
m judges, what is the ranking that best represents the consensus
opinion?

Learning from Preference Rankings



Rank aggregation problem Introduction to the topic

Consensus ranking: a bit of history

It is:

a very old problem (de Borda, 1781; Condorcet, 1785) ;

that became a classical problem (Coombs, 1950; Black, 1958; Arrow,

1951; Goodman and Markowitz, 1952; Coombs, 1964; Davis et al., 1972;

Bogart, 1973; Cook and Saipe, 1976; Cook and Seiford, 1978; Barthelemy and

Monjardet, 1981; Beck and Lin, 1983; Barthélemy et al., 1989) ;

remaining an actual problem (Emond and Mason, 2002; Meila et al.,

2012; Cook et al., 2007; Biernacki and Jacques, 2013; D’Ambrosio et al., 2015;

Amodio et al., 2016; Aledo et al., 2017a; D’Ambrosio et al., 2017; Yu and Xu,

2018) .
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Synonymous of consensus ranking

It has:

a lot of different names (Social choice problem, Consensus ranking problem,

Rank aggregation problem, Kemeny problem, Median ranking problem, Kemeny

aggregation problem, Preference learning problem.....),

also depending on the scientific field (Social sciences, Economics, Computer

science, Statistics,...),

and the reference framework (ad hoc, distance-based, axiomatic, ...).

It is a NP-hard problem.

Learning from Preference Rankings



Rank aggregation problem One step ahead: some distances for rankings

Some distances for rankings: short list

In the framework of preference rankings, distance-based models
and methods are largely used.

Several distance or dissimilarity measures have been defined:
Spearman footrule, Spearman ρ, Kendall, Hulam, Hamming,
Cayley, Kemeny,...

Each distance has some nice property, but which distance one
should use? Is there some important desiderata? Is there some
reference geometrical space?
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id
π

π
d(πi , π1)

Footrule Spearman Kendall Cayley Hamming Ulam Kemeny

1 a b c d 0 0 0 0 0 0 0

2 a b d c 2 2 1 1 2 1 2

3 a c b d 2 2 1 1 2 1 2

4 a d b c 4 6 2 2 3 1 4

5 a c d b 4 6 2 2 3 1 4

6 a d c b 4 8 3 1 2 2 6

7 b a c d 2 2 1 1 2 1 2

8 b a d c 4 4 2 2 4 2 4

9 c a b d 4 6 2 2 3 1 4

10 d a b c 6 12 3 3 4 1 6

11 c a d b 6 10 3 3 4 2 6

12 d a c b 6 14 4 2 3 2 8

13 b c a d 4 6 2 2 3 1 4

14 b d a c 6 10 3 3 4 2 6

15 c b a d 4 8 3 1 2 2 6

16 d b a c 6 14 4 2 3 2 8

17 c d a b 8 16 4 2 4 2 8

18 d c a b 8 18 5 3 4 2 10

19 b c d a 6 12 3 3 4 1 6

20 b d c a 6 14 4 2 3 2 8

21 c b d a 6 14 4 2 3 2 8

22 d b c a 6 18 5 1 2 2 10

23 c d b a 8 18 5 3 4 2 10

24 d c b a 8 20 6 2 4 3 12
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Distances and geometrical space

Kendall and Kemeny are well defined in the permutation polytope.

Spearman ‘enter’ in the polytope: only adjacent points are consistent with the
polytope provided that the length of each edge equals

√
2.

Cayley, Hamming and Ulam are not properly defined in the permutation
polytope.

Cayley does not reach the maximum distance between a ranking and its reverse.

Hamming gets a lot of maximum distances.

Kendall and Kemeny are equivalent for full rankings

If ties are allowed, Kendall fails the triangular inequality and Spearman is
sensitive to the irrelevant alternatives

Kemeny is the unique distance defined in the generalized permutation polytope

The Kemeny distance can be used in Mallows model only for full rankings. For
tied rankings it is not possible: its exact distribution is not known (yet!)
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Kemeny’s axiomatic framework

Let A and B be two rankings and let d(A,B) be a distance
between them (Kemeny, 1959; Kemeny and Snell, 1962):

Axiom 1: d(A,B) must be a metric;

Axiom 2 : invariance:
d(A,B) = d(A′,B ′), where A′ and B ′ result from A and B respectively
by the same permutation of the alternatives.

Axiom 3: consistency in measurement:
If two rankings A and B agree except for a set S of k elements, which is
a segment of both, then d(A,B) may be computed as if these k objects
were the only objects being ranked.

Axiom 4: scaling: The minimum positive distance is 1.
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Kemeny distance

Suppose we have n objects to be ranked. In defining his distance,
Kemeny (1959) made use of the same matrix representation of
rankings as was used earlier by Kendall (1948).

Let aij (bij) be the generic element of the n × n squared preference
matrix A (B) called score matrix, with i , j ∈ 1, · · · , n.

aij = 1 if the ith object is preferred to the jth object;
aij = −1 if the jth object is preferred to the ith object;
aij = 0 if the objects are tied.

The distance is defined as

d(A,B) =
1

2

n∑
i

n∑
j

|aij − bij | .
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Kemeny distance: properties

The Kemeny distance is the unique measure satisfying these
axioms, working with any kind of ranking (full, partial, incomplete,
tied), and naturally defined on the extended permutation polytope
(Heiser and D’Ambrosio, 2013).

Except for the Kendall distance, any other (widely used) distance
(e.g., Spearman’s Footrule, Spearman ρ, Hamming, Cayley, Ulam)
either is not defined in the polytope (do not preserve its geodesic
nature) or assumes strange behaviors in dealing with tied rankings.
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Median ranking

Let X1, . . . ,Xm be a set of m rankings of n objects.
Kemeny and Snell (1962) defined the median ranking as that
ranking (or those rankings)

Ŷ = arg min
Y∈Zn

m∑
k=1

d(Xk ,Y ).
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τX rank correlation coefficient

Emond and Mason (2002) defined a new rank correlation
coefficient, named tau extension, in this way:

τX (A,B) =

∑n
i ,j=1 aijbij

n (n − 1)
,

where aij and bij , i , j = 1, . . . , n, are the elements of the score
matrices of the rankings A and B slightly modified with respect to
the original Kendall’s formulation.

(aij = 1 if the ith object is preferred to or is in a tie with the jth object).
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Median ranking: Emond and Mason’s reformulation

They proved that

τX (A,B) = 1− 2
d(A,B)

n(n − 1)
.

The original Kemeny problem has been reformulated in this way:

Ŷ = arg max
Y∈Zn

∑m
k=1 wk(

∑n
i ,j=1 x

(k)
ij yij)

n(n − 1)
∑m

k=1 wk
= arg max

Y∈Zn

n∑
i ,j=1

cijyij , where

wk is a weight associated to the k-th ranking,

x
(1)
ij , . . . , x

(m)
ij is the set of m modified score matrices associated to m rankings,

cij =
∑m

k=1 wkx
(k)
ij ,

yij represents the elements of the modified score matrix associated to the
ranking Y .
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Rank aggregation problem: STAD contribution 1

Branch-and-bound
algorithm for full rankings

Connection with Mallows
Model

One-to-one correspondence
τa rcc with spread
parameter λ
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Rank aggregation problem: STAD contribution 2

QUICK accurate algorithm
for median ranking problem

FAST solution for problems
with large number of objects
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Rank aggregation problem: STAD contribution 3

Differential evolution
proposal for discrete
optimization problem

Accurate solution for
‘intractable” problems in a
reasonable computing time
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STAD contribution to supervised learning for preference
learning

Prediction trees for any kind
of rankings

New general simulation
settings for any kind of
tree-based methods

It works with several
sampling distributions

Better, it works with real
data
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STAD contribution to unsupervised learning for preference
learning

Probabilistic clustering for
preference data

Distribution free

It works with several
sampling distributions

Better, it works with real
data
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Optimal bucket order problem

The so-called optimal bucket order problem (OBOP) (Gionis et al.,

2006; Ukkonen et al., 2009; Kenkre et al., 2011; Aledo et al., 2017b), namely
dealing with rank aggregation while allowing ties in the solution, is
in fact a recent terminology for the problem already stated by
Kemeny and Snell (1962) when defined the median ranking.

‘The optimal bucket order problem consists in obtaining a complete consensus ranking
(ties are allowed) from a matrix of preferences...’ (Aledo et al., 2018);

‘...the problem is known as the Kemeny ranking problem (...) Both problems have in
common that the solution is a permutation (i.e. a complete ranking without ties)
defined over all the items’ (Aledo et al., 2017b);

‘We address the question of finding a bucket order for a set of items...’ (Gionis et al.,
2006);

...
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Optimal bucket orders (cont’d)

Within the Kemeny’s axiomatic approach, both exact (Emond and

Mason, 2002) and accurate heuristic algorithms (Amodio et al., 2016;

D’Ambrosio et al., 2017) have been proposed. These algorithms, no
matter about the nature of the rankings in input, search the best
solution in Zn.

Other distance-based axiomatic frameworks allow for tied rankings
as a consensus ranking solution (Cook et al., 1986, 1997)
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Median constrained bucket order

New concept (D’Ambrosio, 2017; D’Ambrosio et al, 2019):

let X (1), . . . ,X (k) be a set of rankings of n items each of them
bearing a weight wh, with

∑k
h=1 wh = m.

The median constrained bucket order is that ranking (or those
rankings) Ŷ for which

Ŷ = arg min
Y∈Zn\b

k∑
h=1

whd(X (h),Y ) = arg max
Y∈Zn\b

∑n
i ,j=1 cijyij

m (n (n − 1))
,

where Zn\b is the subset of Zn in which there are exactly b
buckets.
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Rewind: Universe of rankings

Cardinality of the universe of rankings containing ties for n = 1, . . . , 10. The columns
indicating the buckets (b) show the cardinality of the rankings of n items constrained
into b buckets. Last column shows the universe of rankings with n items

n \b 1 2 3 4 5 6 7 8 9 10 ... Zn

1 1 - - - - - - - - - - 1
2 1 2 - - - - - - - - - 3
3 1 6 6 - - - - - - - - 13
4 1 14 36 24 - - - - - - - 75
5 1 30 150 240 120 - - - - - - 541
6 1 62 540 1,560 1,800 720 - - - - - 4,683
7 1 126 1,806 8,400 16,800 15,120 5,040 - - - - 47,293
8 1 254 5,796 40,824 126,000 191,520 141,120 40,320 - - - 545,835
9 1 510 18,150 186,480 834,120 1,905,120 2,328,480 1,451,520 362,880 - - 7,087,261

10 1 1,022 955,980 818,520 5,103,000 16,435,440 29,635,200 30,240,000 16,329,600 3,628,800 - 102,247,563
... ... ... ... ... ... ... ... ... ... ... ... ...
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Median constrained bucket order

Why we are interested in such a constrained solution?

For example, according to the Bordeaux Official Wine
Classification, wines are ranked in quality from first to fifth growths
(Premier Cru, ..., Cinquieme Cru). In that wine tasting experiment
the final solution is requested to be constrained into five buckets.

We were inspired by a possible solution to a real problem, by
following the -too often forgotten- scheme according to which any
real problem should (must) be translated into a statistical
problem, and the solution to the latter problem can help us
to give a possible solution to the real one.
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Triage prioritization example

An experiment was conducted in an Emergency Department (ED)
of two popular Hospitals in Naples regarding the so-called triage,
namely the admission phase to the ED.

A sample of 18 nurses for the Hospital named α and a sample of 35
nurses for the Hospital named β had to place in order n = 25 cases
according to their severity into b = 4 ordered categories: red (R),
yellow (Y ), green (G ) and white (W ). We assume that the cases
can be ordered in terms of severity in this way: R � Y � G �W .
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Triage prioritization example (cont’d)

The 25 cases are the same for both Hospitals.

This experiment is equivalent to asking a set of m judges to rank n
items allowing only b different buckets, with 1 < b < n.
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Triage prioritization example (cont’d)

The median constrained bucket order for Hospital α (τX = 0.6865)
is

[3 24] [1 5 6 7 10 15 16 20] [8 9 11 12 14 17 19 21 22 25] [2 4 13 18 23].

The median constrained bucket order for Hospital β (τX = 0.6903) is

[3 24] [1 5 7 10 16 21] [2 6 8 9 11 12 14 15 17 19 20 22 25] [4 13 18 23].

The buckets correspond to the coding R, Y , G and W respectively. The
numbers correspond to the ID of each single patient.
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Triage prioritization example (cont’d)

After the experiment, a supervisor revealed the ‘true’ coding for
each case, which is:

[3 24] [1 5 6 7 10 12 15 16 20] [8 9 11 14 17 19 21 22 25] [2 4 13 18 23].

The agreement between the true bucket order and the median
constrained bucket orders is clear for Hospital α (τX = 0.917),
showing a good decision process of the nurses.

The same measure for the Hospital β is equal to 0.697, showing a
less good global decision process.
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Triage prioritization example (cont’d)

We can statistically check the equality of the median constrained
bucket orders by using the R2 statistic as described in Marden
(1996, Chapter 4, pag. 102)

R2 = 1−
∑L

l=1

∑m(l)

i=1 d(X (li)Ŷ (l))∑L
l=1

∑m(l)

i=1 d(X (li)Ŷ )
,

where L and m(l) are the groups and the sample size within each
group, X (li) is the i-th ranking in the l-th group, Ŷ (l) and Ŷ are
the median constrained bucket order for the l-th group and for the
entire sample respectively.

If the bucket orders in the two samples are equal then R2 = 0,
which constitutes the null hypothesis of the test.
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Triage prioritization example (cont’d)

In our case R2 = 0.0477 (even if the theoretical maximum value of R2 is equal

to one, practically it often achieves values close to zero. Marden, 1996).
The test has been performed by computing a randomized p-value
with 1,000 replications (Feigin and Cohen, 1978; Marden, 1996), which
resulted to be less than 0.001.

Nurses in Hospital β need a more ‘general’ training phase than the
ones working in Hospital α.

This example shows the usefulness of the novel concept of
constraining the median ranking to be expressed with a
pre-specified number of buckets.
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Algorithmic details

Branch-and-bound: cut branches that generate rankings with
more than b buckets. Cut branches whose penalty is larger
than the incremental penalty if there are less than b buckets.

QUICK: store rankings that have exactly b buckets. Discharge
rankings with penalty larger than incremental penalty.

DECoR: restrict the searching space and use the
bounded-closest-integer approach instead of hierarchical
approach.
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Concluding remarks I

The median constrained bucket order problem is a new concept.

It can be tackled under several axiomatic frameworks, but

distance-based approaches to rank aggregation problems must take
in account to deal with (a lot) of ties
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Concluding remarks II

It can be used only when there is a good reason for searching the solution

in a restricted space (see triage prioritization data set, there are other -not

shown- cases, such as the study of priorities for students with disabilities)
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Concluding remarks III

We propose both branch-and-bound and differential evolution
solutions, modifying the algorithms proposed by Emond and Mason

(2002), Amodio et al. (2016) and D’Ambrosio et al. (2017).

Any other proposal dealing with tied rankings can be ‘adjusted’ to
return a median constrained bucket order.

Algorithms can change, the idea remains.
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Thank you

and thanks for being
still awake!!
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