

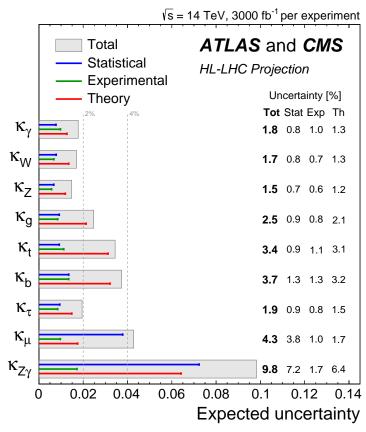
MACHINE LEARNING AN UNKNOWN PHYSICAL LAW: THE STRUCTURE OF THE PROTON

STEFANO FORTE Università di Milano & INFN

ROME PHYSICS ENCOUNTERS

Frascati, February 20, 2020

PHYSICS AT THE LHC AS PRECISION PHYSICS


DEVIATIONS FROM SM

SM CROSS-SECTIONS TODAY:

TH. VS EXP.

HL-LHC: 2024-2040

$$\kappa_j^2 = \sigma_j / \sigma^{\rm SM}$$

- SM TESTED AT THE PERCENT LEVEL
- SEEING DEVIATIONS REQUIRES SUB-PERCENT ACCURACY

SUMMARY

PDFs: A RECAP SEQUENCE

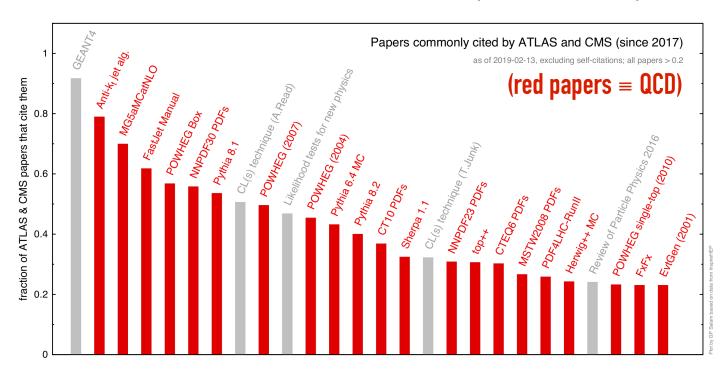
- DETERMINING PDFS
- DISCOVERING NEW PHYSICS
- PDF UNCERTAINTIES, TOLERANCE AND ALL THAT

ARTFICIAL INTELLIGENCE

- PDFS, AI AND ML
- THE NNPDF METHODOLOGY: IDEAS AND TESTS
- THE STATE OF THE ART: ACCOMPLISHMENTS AND CHALLENGES

MACHINE LEARNING PDFs

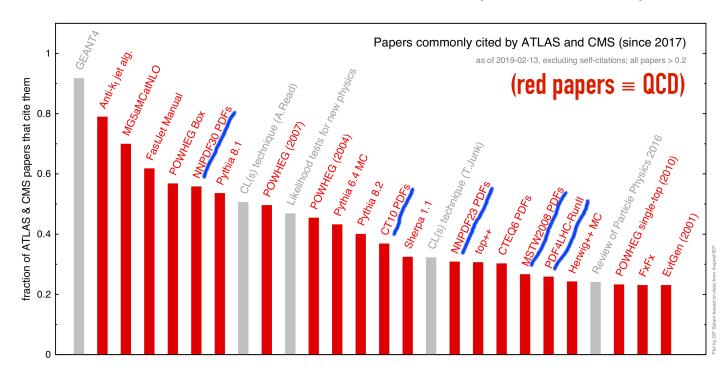
- OPTIMIZATION
- HYPEROPTIMIZATION
- INTO THE UNKNOWN


PDFS AND PRECISION PHYSICS

UNCERTAINTIES AND QCD

- ullet THE LHC IS A PROTON COLLIDER \Rightarrow ANY INTERACTION CONTAINS A STRONG INTERACTION
- QCD IS THE MAIN THEORETICAL PROBLEM

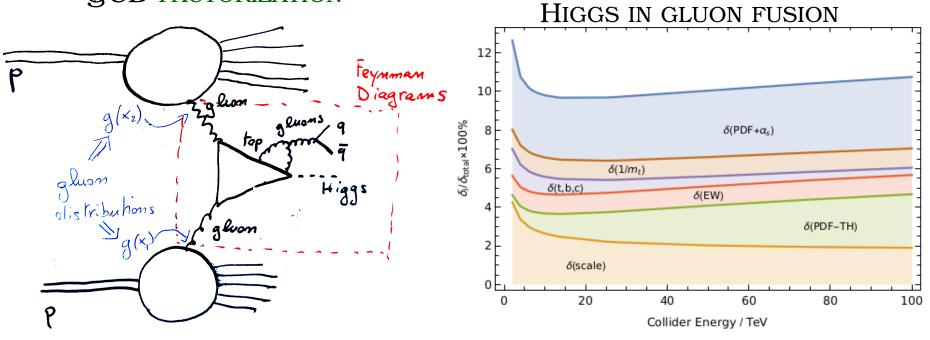
• .


PAPERS MOST CITED BY ATLAS (BY FRACTION)

UNCERTAINTIES QCD, AND PDFs

- THE LHC IS A PROTON COLLIDER \Rightarrow ANY INTERACTION CONTAINS A STRONG INTERACTION
- QCD IS THE MAIN THEORETICAL PROBLEM
- PDFs are the dominant issue

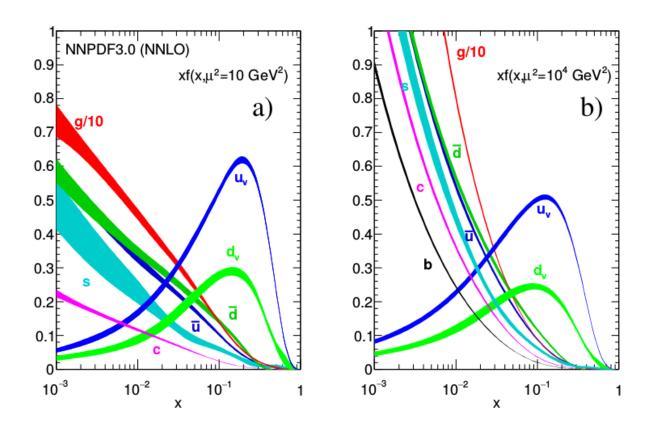
PAPERS MOST CITED BY ATLAS (BY FRACTION)



(G. Salam, 2019)

UNCERTAINTIES AND PDFs

UNCERTAINTIES:



(HL-LHC Higgs WG report, 2019)

- PDF ESPRESS THE LIKELIHOOD OF A QUARK OR GLUONS (PARTONS)
 TO ENTER A COLLISION
- THEIR KNOWLEDGE IS A DOMINANT SOURCE OF UNCERTAINTY

A PORTRAIT OF THE PROTON

AS SEEN FROM A HIGGS BOSON

(PDG 2018)

- PARTON DISTRIBUTIONS: MOMENTUM FRACTION DISTRIBUTIONS FOR EACH TYPE OF QUARK, ANTIQUARK & THE GLUON
- EXTRACTED FROM DATA, COMPARING PDF-DEPENDENT PREDICTION & INVERTING
- MUST DETERMINE A PROBABILITY DISTRIBUTION OF FUNCTIONS FROM A DISCRETE SET OF DATA

HOW DID WE GET HERE?

DISCOVERY AT A HADRON COLLIDER AND PDFS THE DISCOVERY OF THE W (1984)

EXPERIMENTAL DISCOVERY

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-EP/85-108 11 July 1985

W PRODUCTION PROPERTIES AT THE CERN SPS COLLIDER

UA1 Collaboration, CERN, Geneva, Switzerland

Aachen¹-Amsterdam (NIKHEF)²-Annecy (LAPP)³-Birmingham⁴-CERN⁵
Harvard⁶-Helsinki⁷-Kiel⁸-London (Imperial College⁹ and Queen Mary College¹⁰)-Padua¹¹
Paris (Coll. de France)¹²-Riverside¹³-Rome¹⁴-Rutherford Appleton Lab.¹⁵
Saclay (CEN)¹⁶-Victoria¹⁷-Vienna¹⁸-Wisconsin¹⁹ Collaboration

The corresponding experimental result for the 1984 data at \sqrt{s} = 630 GeV is

 $(\sigma \cdot B)_W = 0.63 \pm 0.05 (\pm 0.09) \text{ nb}$.

This is in agreement with the theoretical expectation [14] of $0.47^{+0.14}_{-0.08}$ nb. We note that the 15%

THEORETICAL PREDICTION

42

G. Altarelli et al. / Vector boson production

Table 2 Values (in nb) of the total cross sections for W^{\pm} and Z^0 production

√S (GeV)	W++W-GHR	W ⁺ + W ⁻	W++W- DO2	Z ⁰ GHR	Z ⁰ DO1	Z ⁰	$\frac{\sigma(W^+ + W^-)}{\sigma(Z^0)}$ GHR	$\frac{\sigma(W^+ + W^-)}{\sigma(Z^0)}$ DO1	$\frac{\sigma(W^+ + W^-)}{\sigma(Z^0)}$ DO2
700	6.2	6.3	6.1	2.0	1.9	1.8	3.1	3.3	3.4
1000	9.5	9.5	9.6	3.1	3.0	2.9	3.1	3.2	3.3
1300	12.5	12.5	12.9	4.0	3.9	3.9	3.1	3.2	3.3
1600	15.5	15.6	16.5	5.0	4.8	5.0	3.1	3.2	3.3

ALTARELLI, ELLIS, GRECO, MARTINELLI, 1984

- AGREEMENT AND UNCERTAINTIES AT 20% CONSIDERED TO BE SATISFACTORY
- RESULTS FROM DIFFERENT PDF SETS DIFFER BY AT LEAST 5%
- NO WAY TO ESTIMATE PDF UNCERTAINTIES

DISCOVERY AT A HADRON COLLIDER AND PDFs THE DISCOVERY OF THE W (1984)

THEORETICAL PREDICTION

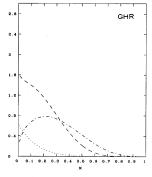

G. Altarelli et al. / Vector boson production

TABLE 2 Values (in nb) of the total cross sections for W^{\pm} and Z^0 production

√S (GeV)	W++W-GHR	W ⁺ + W ⁻ DO1	W++W- DO2	Z ⁰ GHR	Z ⁰ DO1	Z ⁰	$\frac{\sigma(W^+ + W^-)}{\sigma(Z^0)}$ GHR	$\frac{\sigma(W^+ + W^-)}{\sigma(Z^0)}$ DO1	$\frac{\sigma(W^+ + W^-)}{\sigma(Z^0)}$ DO2
700	6.2	6.3	6.1	2.0	1.9	1.8	3.1	3.3	3.4
1000	9.5	9.5	9.6	3.1	3.0	2.9	3.1	3.2	3.3
1300	12.5	12.5	12.9	4.0	3.9	3.9	3.1	3.2	3.3
1600	15.5	15.6	16.5	5.0	4.8	5.0	3.1	3.2	3.3

ALTARELLI, ELLIS, GRECO, MARTINELLI, 1984

PDFs in 1984

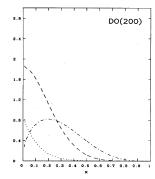


FIG. 25. Parton distributions of Glück, Hoffmann, and Reya (1982), at $Q^2=5~{\rm GeV^2}$: valence quark distribution $x\left[u_n(x)+d_n(x)\right]$ (dotted-dashed line), xG(x) (dashed line), and

FIG. 27. "Soft-gluon" (Λ =200 MeV) parton distributions of Duke and Owens (1984) at Q^2 =5 GeV²: valence quark distribution $x[u_v(x)+d_v(x)]$ (dotted-dashed line), xG(x) (dashed

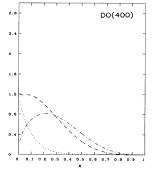


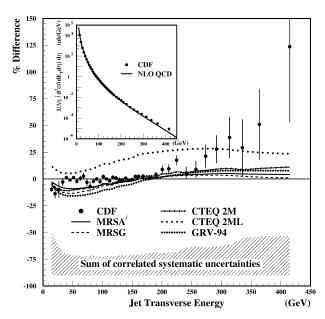
FIG. 26. "Hard-gluon" ($\Lambda=400$ MeV) parton distributions of Duke and Owens (1984) at $Q^2=5$ GeV²: valence quark distribution $x[u_0(x)+d_s(x)]$ (dotted-dashed line), xG(x) (dashed line), and $q_v(x)$ (dotted line).

Rev. Mod. Phys., Vol. 56, No. 4, October 1984

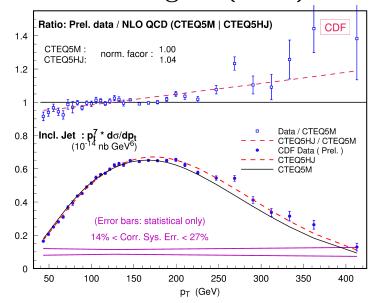
GHR vs Duke-Owens

- AGREEMENT AND UNCERTAINTIES AT 20% CONSIDERED TO BE SATISFACTORY
- RESULTS FROM DIFFERENT PDF SETS DIFFER BY AT LEAST 5%
- NO WAY TO ESTIMATE PDF UNCERTAINTIES

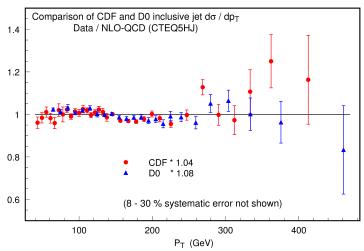
DISCOVERY AT A HADRON COLLIDER AND PDFS THE DISCOVERY OF QUARK COMPOSITENESS (1995)


- DISCREPANCY BETWEEN QCD CALCULATION AND CDF JET DATA (1995)
- EVIDENCE FOR QUARK COMPOSITENESS

• .



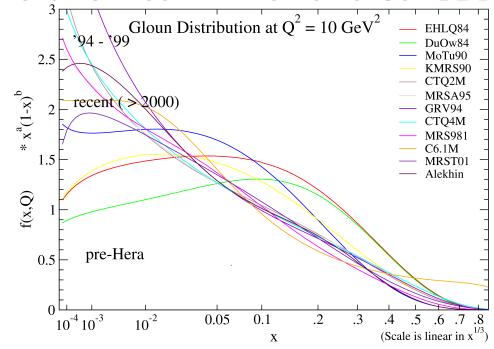
DISCOVERY AT A HADRON COLLIDER AND PDFS A BETTER DETERMINATION OF THE GLUON PDF (1995)_


- DISCREPANCY BETWEEN QCD CALCULATION AND CDF JET DATA (1995)
- EVIDENCE FOR QUARK COMPOSITENESS
- NO INFO ON PARTON UNCERTAINTY \Rightarrow RESULT STRONGLY DEPENDS ON GLUON AT $x \geq 0.1$

DISCREPANCY REMOVED IF JET DATA INCLUDED IN THE FIT NEW CTEQ FIT (1996)

FINAL CTEQ FIT (1998)

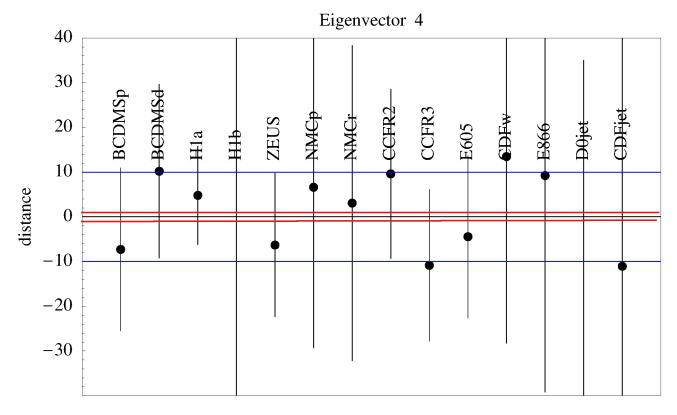
WHAT'S THE PROBLEM ~ 2000


PDFs DETERMINED FITTING A MODEL-INSPIRED FUNCTIONAL FORM

gluon parametrization (MRST 2004)

$$xg(x,Q_0^2) = A_g(1-x)^{\eta_g}(1+\epsilon_g x^{0.5} + \gamma_g x)x^{\delta_g} - A_-(1-x)^{\eta_-} x^{-\delta_-}$$

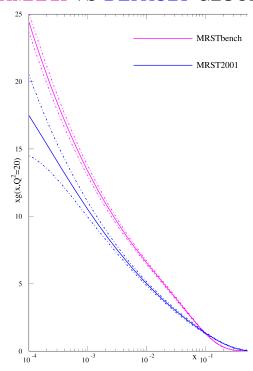
- PROBLEM REDUCED TO FINITE-DIMENSIONAL
- WHO PICKS THE FUNCTIONAL FORM?


HISTORICAL COMPILATION OF GLUON PDFS

FIRST PDFs WITH UNCERTAINTIES (2002) "TOLERANCE"

one sigma & ten sigma intervals for typical covariance matrix eigenvalue

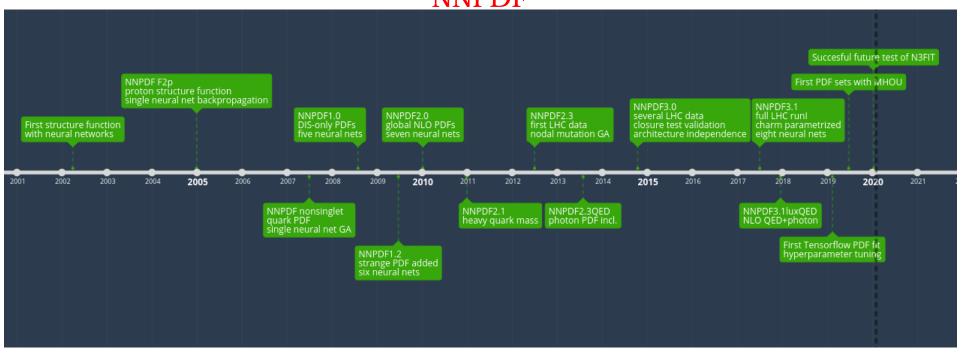
vs best value and uncertainty from individual experiments

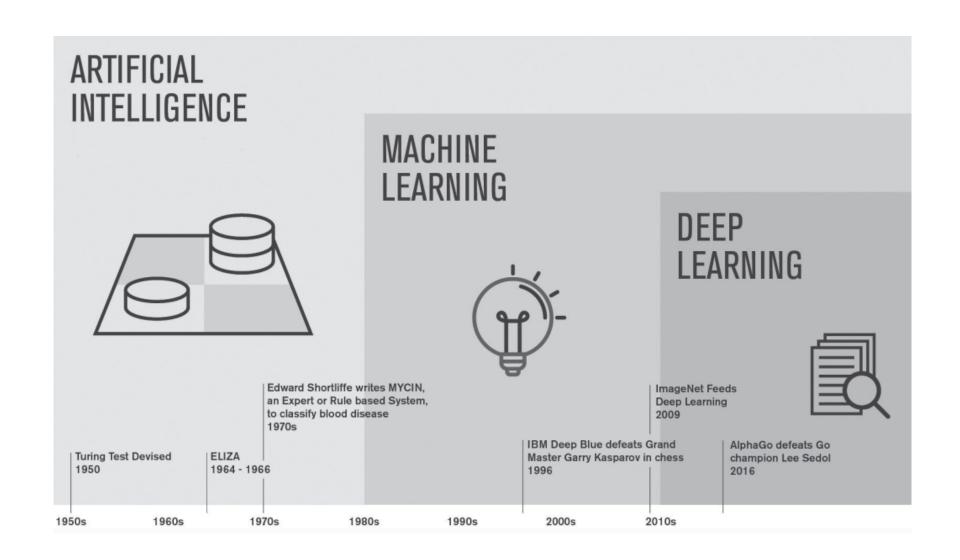


- SPREAD OF BEST-FIT FROM DIFFERENT DATA HUGE W.R. TO TEXTBOOK UNCERTAINTIES
- PDF UNCERTAINTIES RESCALED BY "TOLERANCE" $T\sim 10$

THE HERA-LHC BENCHMARK (2005)

- RESTRICTED AND VERY CONSISTENT DATASET USED
- RESULTS COMPARED TO THEN-BEST RESULT FROM FULL DATASET


BENCHMARK VS DEFAULT GLUON


"...the partons extracted using a very limited data set are completely incompatible, even allowing for the uncertainties, with those obtained from a global fit with an identical treatment of errors...The comparison illustrates the problems in determining the true uncertainty on parton distributions." (R.Thorne, HERALHC, 2005)

PDFS AND AI: NNPDF

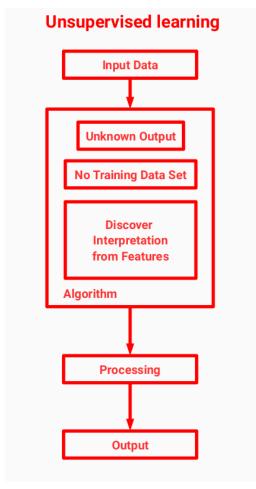
PROTON STRUCTURE AS AN AI PROBLEM: NNPDF

FROM AI TO ML

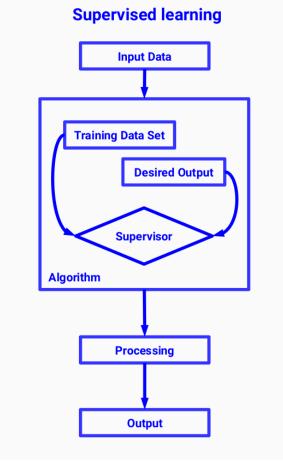
SHIFTING OF PARADIGMS

"KNOWLEDGE BASED" AI

- LEARN AND IMPLEMENT A SET OF RULES
- GOOD FOR CHESS, BAD FOR REAL LIFE



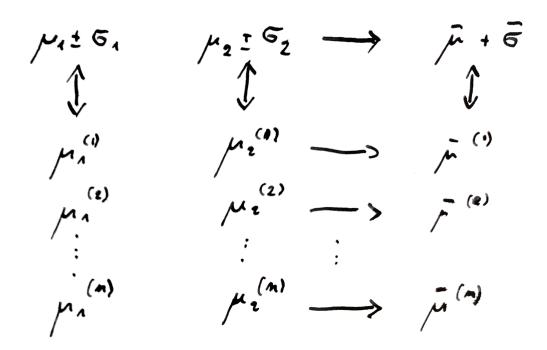
MACHINE LEARNING


- "INTUITIVE" REPRESENTATION
- THE AI AGENT BUILID UP ITS OWN KNOWLEDGE

MACHINE LEARNING ALGORITHMS

EXTRACT AND OPTIMIZE DATA FEATURES

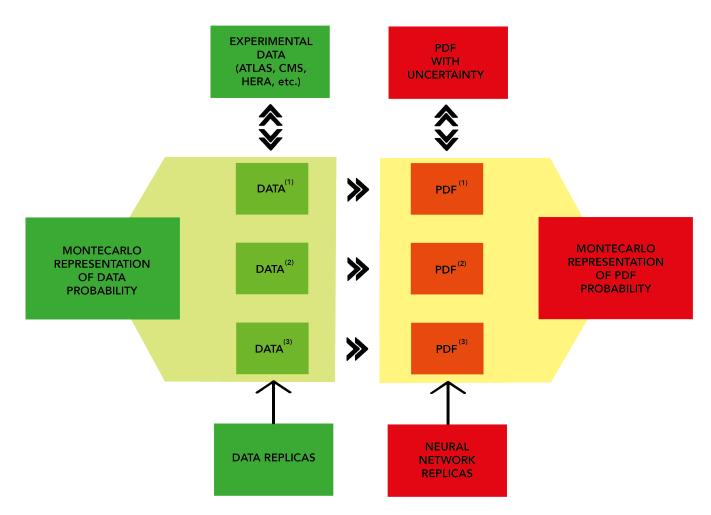
OPTIMIZE A PROPERTY LEARNING FROM DATA


LEARN FROM DATA
THE LEARNING STRATEGY

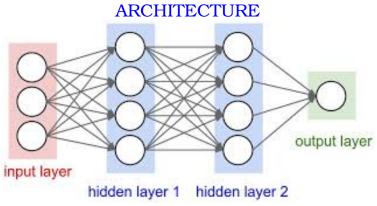
THE NNPDF APPROACH COMBINING DATA BY MONTE CARLO

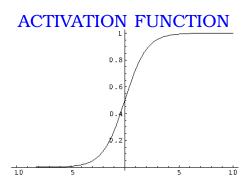
TWO MEASUREMENTS: $\mu_1 \pm \sigma_1$; $\mu_2 \pm \sigma_2$

COMBINATION: $\bar{\mu} \pm \bar{\sigma}$; $\bar{\mu} = \frac{\frac{\bar{\sigma}_1^2 + \frac{\bar{\sigma}_2^2}{\sigma_2^2}}{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}}$; $\bar{\sigma}^2 = \frac{1}{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}}$


MONTE CARLO REPRESENTATION

 $\mu^{(i)} \Leftrightarrow \text{REPLICA SAMPLE} \Leftrightarrow \text{REPRESENTATION OF PROBABILITY DISTRIBUTION NEED ONLY TO KNOW HOW TO COMBINE CENTRAL VALUES$


AI FOR PDFS: THE NNPDF APPROACH THE FUNCTIONAL MONTE CARLO


REPLICA SAMPLE OF FUNCTIONS ⇔ PROBABILITY DENSITY IN FUNCTION SPACE KNOWLEDGE OF LIKELIHHOD SHAPE (FUNCTIONAL FORM) NOT NECESSARY

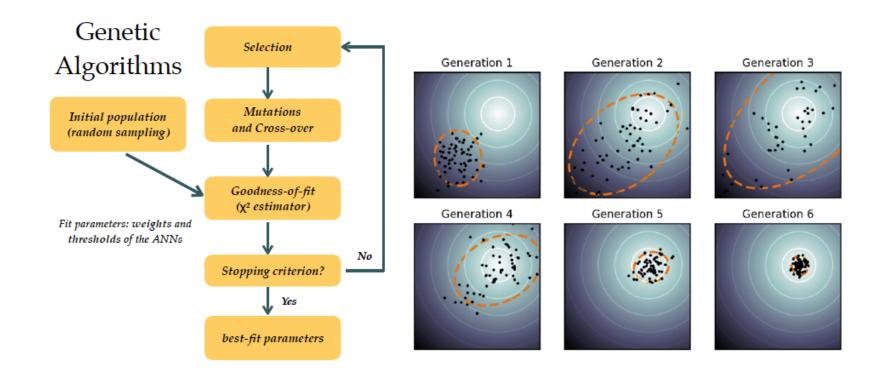
FINAL PDF SET: $f_i^{(a)}(x,\mu)$; i =up, antiup, down, antidown, strange, antistrange, charm, gluon; $j = 1, 2, ... N_{\text{rep}}$

ARTIFICIAL INTELLIGENCE NEURAL NETWORKS

PARAMETERS

- WEIGHTS ω_{ij}
- THRESHOLDS θ_i

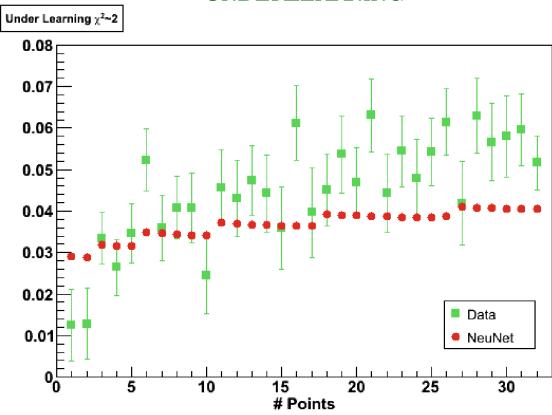
$$F_{\text{out}}^{(i)}(\vec{x}_{\text{in}}) = F\left(\sum_{j} \omega_{ij} x_{\text{in}}^{j} - \theta_{i}\right)$$


SIMPLEST EXAMPLE 1-2-1

$$f(x) = \frac{1}{\theta_1^{(3)} - \frac{\omega_{11}^{(2)}}{1 + e^{\theta_1^{(2)} - x\omega_{11}^{(1)}} - \frac{\omega_{12}^{(2)}}{1 + e^{\theta_2^{(2)} - x\omega_{21}^{(1)}}}}$$

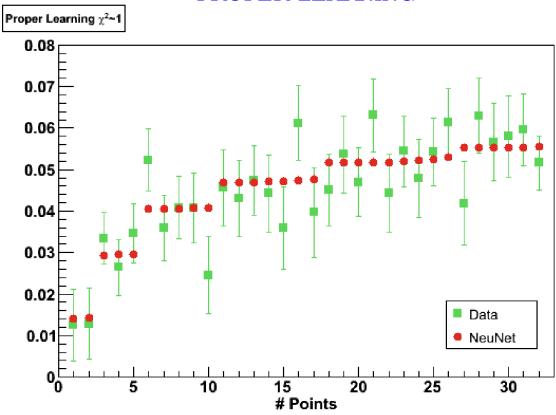
NNPDF: 2-5-3-1 NN for each PDF: $37 \times 8 = 296$ parameters

SUPERVISED LEARNING GENETIC ALGORITHMS


- BASIC IDEA: RANDOM MUTATION OF THE NN PARAMETER
- SELECTION OF THE FITTEST

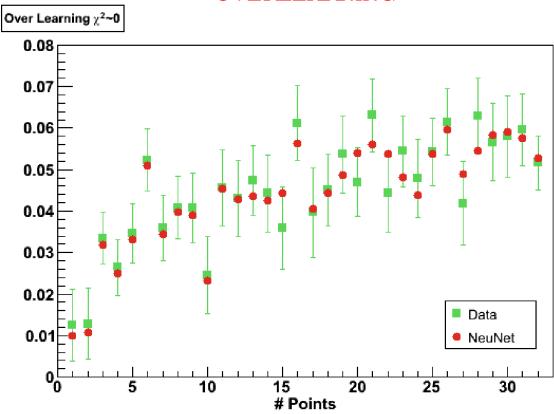
NEURAL LEARNING

- COMPLEXITY INCREASES AS THE FITTING PROCEEDS
- UNTIL LEARNING NOISE
- WHEN SHOULD ONE STOP?

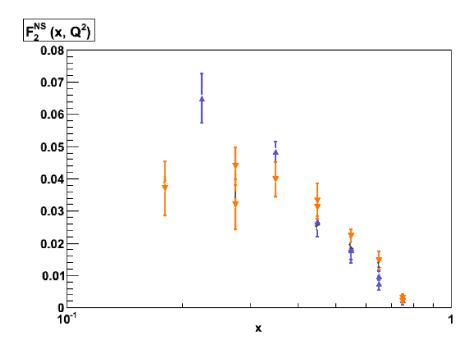

UNDERLEARNING

NEURAL LEARNING

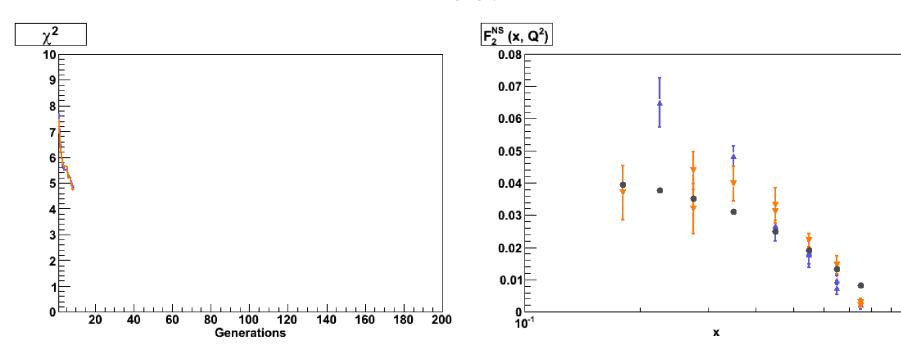
- COMPLEXITY INCREASES AS THE FITTING PROCEEDS
- UNTIL LEARNING NOISE
- WHEN SHOULD ONE STOP?


PROPER LEARNING

NEURAL LEARNING

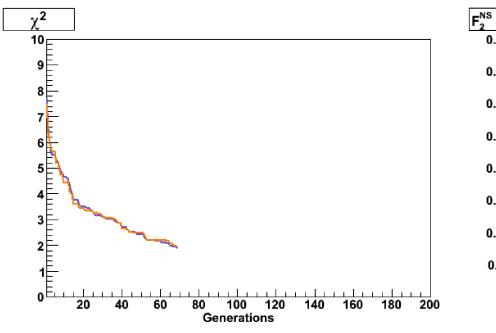

- COMPLEXITY INCREASES AS THE FITTING PROCEEDS
- UNTIL LEARNING NOISE
- WHEN SHOULD ONE STOP?

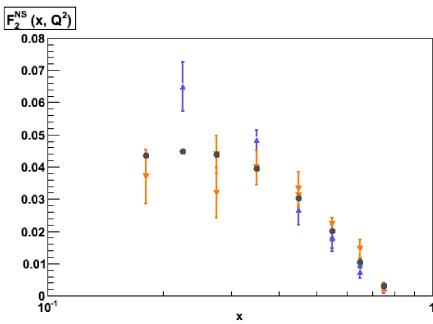
GENETIC MINIMIZATION: AT EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING


- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- ullet MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- ullet AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- \bullet WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

GENETIC MINIMIZATION: AT EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- ullet MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- ullet AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- ullet WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

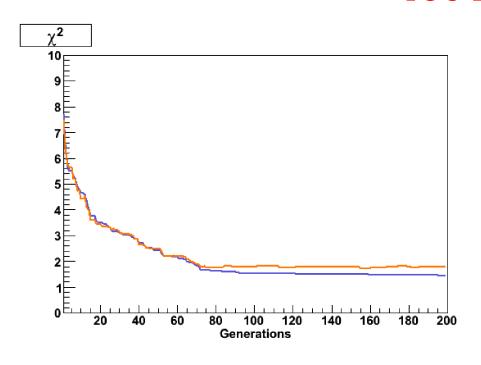

GO!

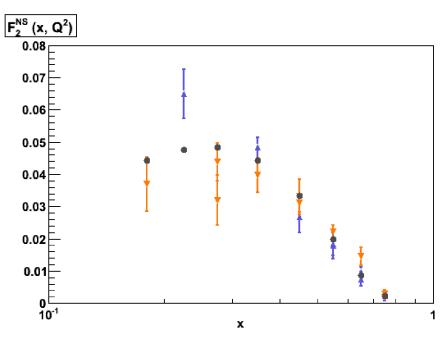


GENETIC MINIMIZATION: AT EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING

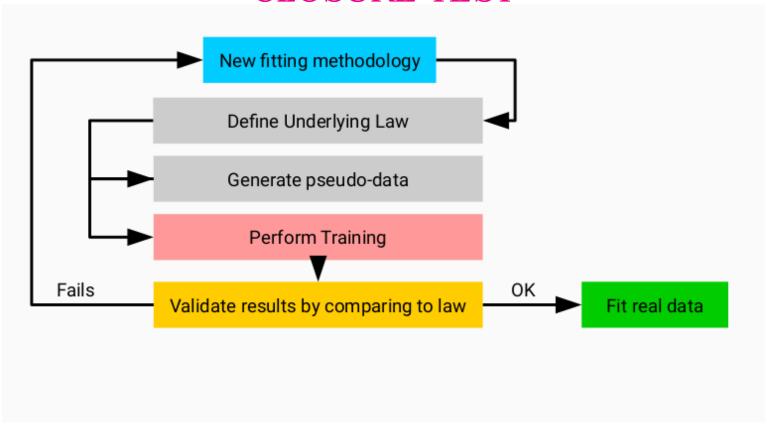
- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- \bullet AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- ullet WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

STOP!

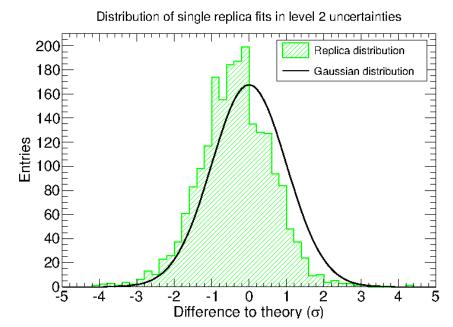




GENETIC MINIMIZATION: AT EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING

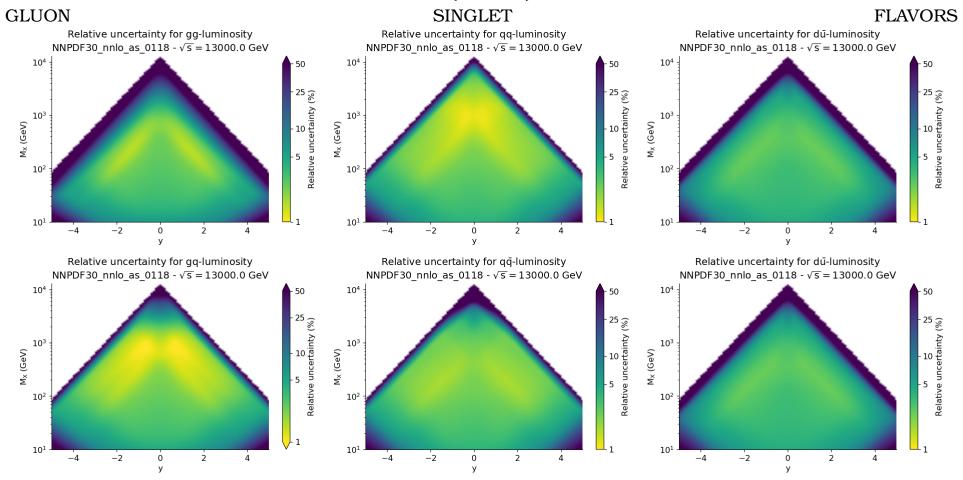

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- ullet AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- ullet WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

TOO LATE!

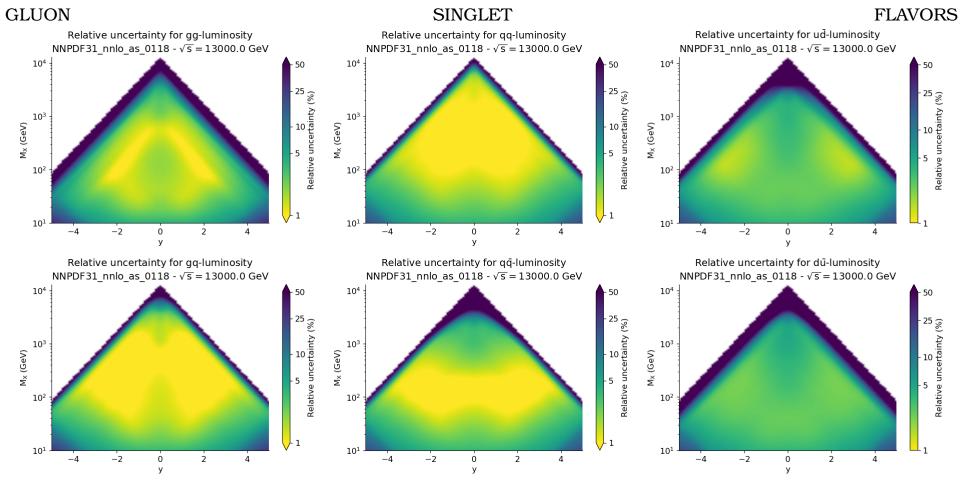


HOW DO WE KNOW THAT WE GOT THE RIGHT ANSWER? CLOSURE TEST

FIRST CLOSURE TEST (NNPDF3.0; 2014) NORMALIZED DISTRIBUTION OF DEVIATIONS

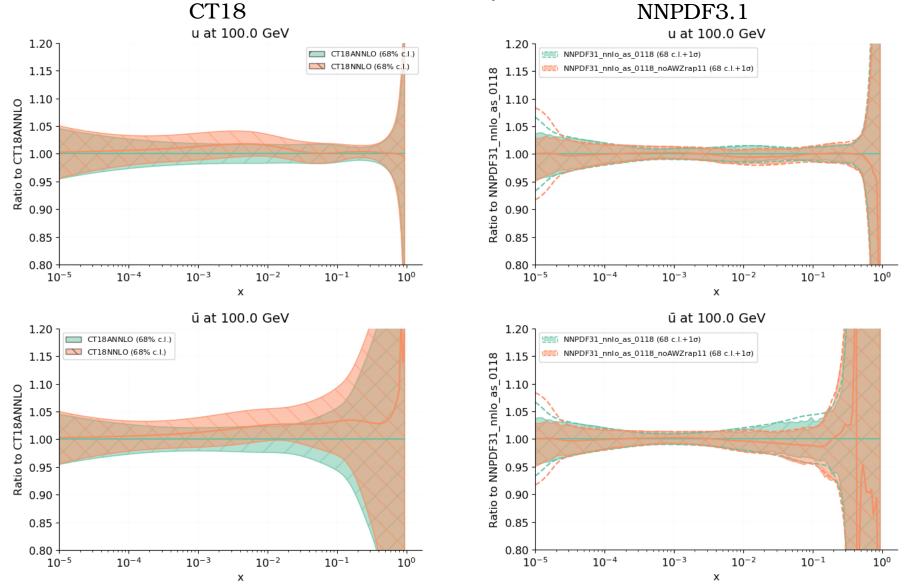


1 σ : 70% (should be 68%)

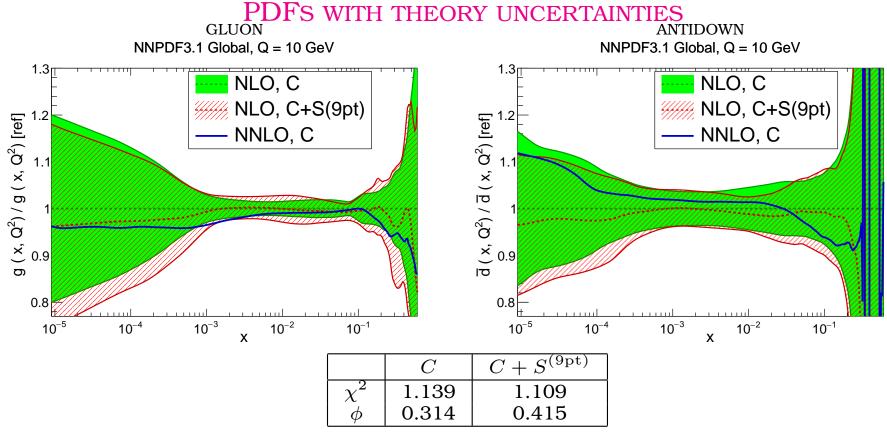

• THE METHODOLOGY IS FAITHFUL

THE STATE OF THE ART: PRECISION PDF4LHC PDFs (2014) NNPDF3.0 NNLO

- ullet GLUON BETTER KNOWN AT SMALL x, VALENCE QUARKS AT LARGE x, SEA QUARKS IN BETWEEN
- TYPICAL UNCERTAINTIES IN DATA REGION $\sim 3-5\%$
- SWEET SPOT: VALENCE Q G; DOWN TO 1%
- UP BETTER KNOWN THAN DOWN; FLAVOR SINGLET BETTER THAN INDIVIDUAL FLAVORS


THE STATE OF THE ART: PRECISION CURRENT PDFs (2017) NNPDF3.1 NNLO

- ullet GLUON BETTER KNOWN AT SMALL x, VALENCE QUARKS AT LARGE x, SEA QUARKS IN BETWEEN
- TYPICAL UNCERTAINTIES IN DATA REGION $\sim 1-3\%$
- SWEET SPOT: VALENCE Q G; 1% OR BELOW
- UP BETTER KNOWN THAN DOWN; FLAVOR SINGLET BETTER THAN INDIVIDUAL FLAVORS


THE STATE OF THE ART: CONSISTENCY

IMPACT OF ATLAS W/Z 7TEV DATA

- CT18: PDF SETS RELEASED WITH/WITHOUT ATLAS W/Z DATA INCLUDED
- NNPDF3.1: CONSISTENCY OF ALL DATASETS INCLUDED

THE STATE OF THE ART: ACCURACY

- FIT QUALITY χ^2 IMPROVES
- ullet RELATIVE ERROR ϕ ON PREDICTION MILDLY INCREASED
- CENTRAL VALUE MOVES TOWARDS KNOWN NNLO

EQUALLY PRECISE BUT MORE ACCURATE RESULT!

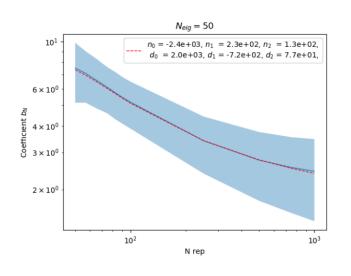
THE STATE OF THE ART:

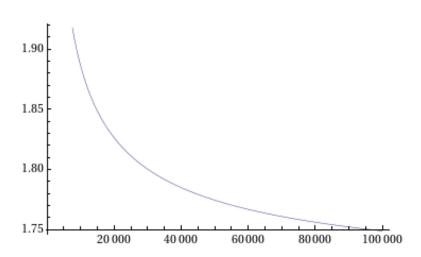
QUESTIONS

- DO WE REALLY NEED 1000 REPLICAS? OR 100? ⇒ EFFICIENCY
- ARE 1000 REPLICAS ENOUGH? OR 10000? ⇒ ACCURACY
- PDF UNCERTAINTIES ARE FAITHFUL, BUT ARE THEY OPTIMAL?
 - ⇒ PRECISION

PDFS FROM AI TO ML

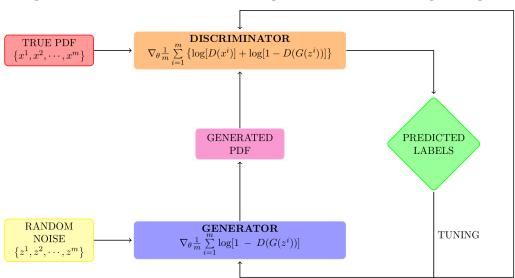
ML: UNSUPERVISED LEARNING OPTIMIZATION I


- HOW TO MAXIMIZE ACCURACY?
- LARGE (PRIOR) REPLICA SET
- GENETIC SELECTION ⇒ OPTIMIZATION OF STATISTICAL INDICATORS (KULLBACK-LEIBLER DIVERGENCE)
- 50 optimizes replicas \Leftrightarrow 1000 starting replicas


CORRELATION MATRIX

ML: SUPERVISED LEARNING OPTIMIZATION II HOW MANY PDF REPLICAS DO WE NEED?

FINITE-SIZE EFFECTS ONE- σ $\Delta\chi^2$ VS NUMBER OF REPLICAS

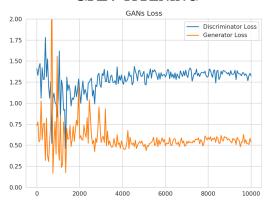

- SIGNIFICANT DEPENDENCE ON NUMBER OF REPLICAS
- ASYMPTOTIC "TOLERANCE" $T = 1.3 \pm 0.3; \ \Delta \chi^2 = 1.7 \pm 0.7$
- FOR $N_{\text{rep}} = 100$, T = 2.3, even for $N_{\text{rep}} = 1000$, T = 1.6

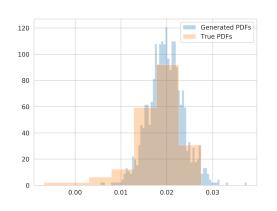
DO WE HAVE TO FIT 10000 REPLICAS? DO WE HAVE TO USE 10000 REPLICAS?

ML: SUPERVISED LEARNING OPTIMIZATION II

- CAN WE REDUCE THE NUMBER OF COMPRESSED REPLICAS WITHOUT LOSS OF INFORMATION? SOLUTION FOR USER
- CAN WE INCREASE THE NUMBER OF REPLICAS WITHOUT REFITTING? SOLUTION FOR PDF FITTER

GENERATIVE ADVERSARIAL NETWORKS

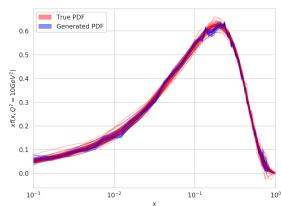


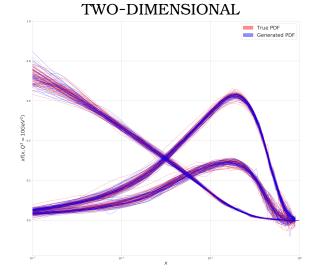

- TRAIN A NETWORK TO SIMULATE THE TRUE DISTRIBUTION (GENERATOR)
- TRAIN A NETWORK TO DISCRIMINATE TRUTH FROM SIMULATION (DISCRIMINATOR)
- TRAIN THE GENERATOR TO TRICK THE DISCRIMINATOR

SOLVING THE PROBLEM.... GAN REPLICA GENERATION

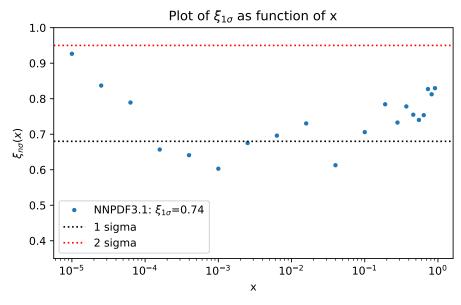
GAN TRAINING

UP VALENCE AT FIXED x


• 1D GAN: REPRODUCE THE INFORMATION IN THE UNDERLYING REPLICA SET, BUT NO GAIN (WIGGLY REPLICAS)


⇒ REDUCE THE NUMBER OF COMPRESSED REPLICA WITH FIXED NUMBER OF FITTED REPLICAS W/O INFORMATION LOSS

◆ 2D GAN: COMBINE CORRELATED INFORMATION FROM UNDERLYING REPLICA SET INFERRING THE TRUE UNDERLYING DISTTRIBUTION
 ⇒ REDUCE THE NUMBER OF INPUT REPLICAS W/O INFORMATION LOSS



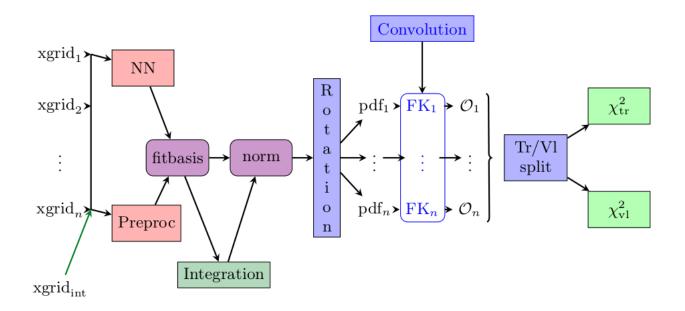
CLOSURE TEST: A CLOSER LOOK (NNPDF3.1)

ONE σ : ACTUAL/PREDICTED FOR DATA, BY EXPERIMENT

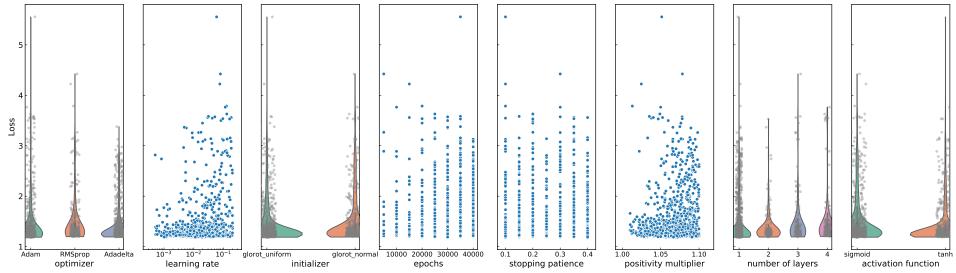
	NNPDF3.1 ratio
experiment	
NMC	0.882828
SLAC	0.767063
BCDMS	0.730569
CHORUS	0.698907
NTVDMN	0.991090
HERACOMB	0.847359
HERAF2CHARM	1.867597
F2BOTTOM	1.124157
DYE886	0.655955
DYE605	0.585725
CDF	0.961652
D0	0.881199
ATLAS	0.904127
CMS	1.090241
LHCb	1.092194
Total	0.842168

- UNCERTAINTIES OVERESTIMATED
- 1 σ >68% at very small and very large x; 1 σ <68% at intermediate x

CAN WE DO BETTER?


FITTING THE METHODOLOGY

THE N3FIT PROJECT


HOW DO WE KNOW THAT THE METHODOLOGY IS THE BEST? "ACCUMULATED WISDOM" INEFFICIENT AND SLOW

CHANGE OF PHILOSOPHY \Rightarrow DETERMINISTIC MINIMIZATION (GRADIENT DESCENT) GO FOR THE ABSOLUTE MINIMUM, AND (HYPER)OPTIMIZE

- PYTHON-BASED KERAS + TENSORFLOW FRAMEWORK
- EACH BLOCK INDEPENDENT LAYER
- CAN VARY ALL ASPECT OF METHODOLOGY

FITTING THE METHODOLOGY HYPEROPTIMIZATION SCANS

HYPEROPT PARAMETERS

NEURAL NETWORK

NUMBER OF LAYERS (*)
SIZE OF EACH LAYER
DROPOUT
ACTIVATION FUNCTIONS (*)
INITIALIZATION FUNCTIONS (*)

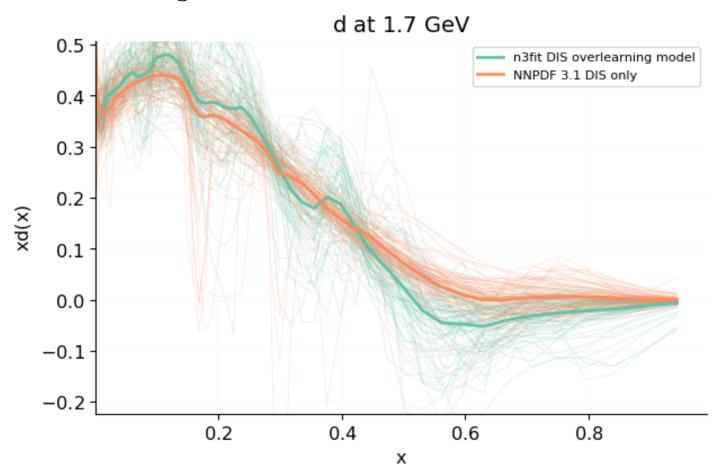
FIT OPTIONS

OPTIMIZER (*)

INITIAL LEARNING RATE (*)

MAXIMUM NUMBER OF EPOCHS (*)

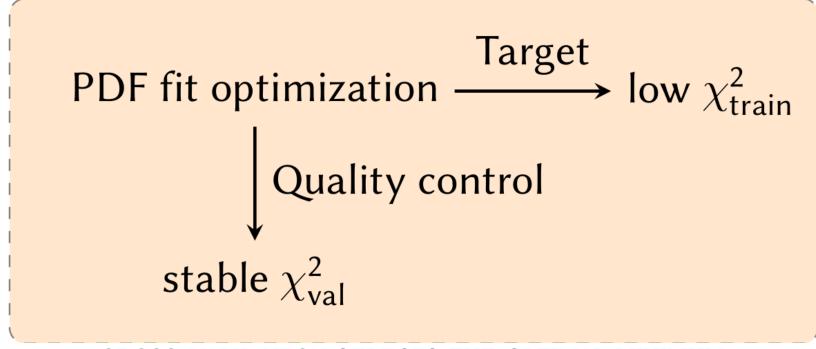
STOPPING PATIENCE (*)


POSITIVITY MULTIPLIER (*)

- SCAN PARAMETER SPACE
- OPTIMIZE FIGURE OF MERIT: VALIDATION χ^2
- BAYESIAN UPDATING

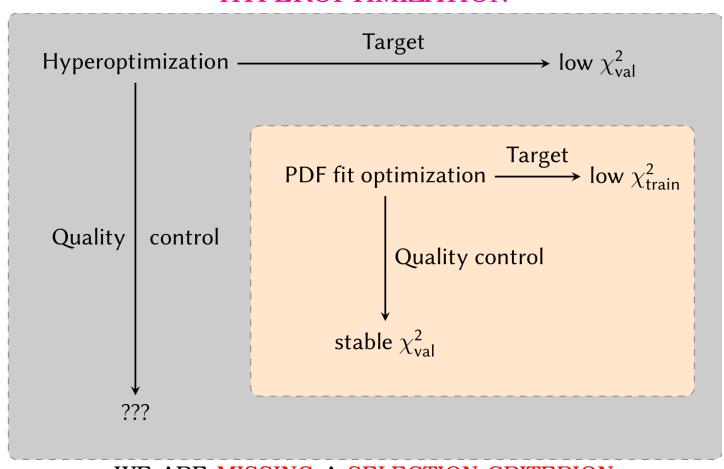
FITTING THE METHODOLOGY

THE OVERFITTING PROBLEM


DOWN QUARK: HYPEROPTIMIZED VS. STANDARD

- NNPDF3.1: WIGGLES: FINITE SIZE \Rightarrow WILL GO AWAY AS N_{rep} GROWS
- N3FIT: WIGGLY PDFS \Leftrightarrow OVERFITTING \Rightarrow WILL NOT GO AWAY ($\chi^2_{\rm train} \ll \chi^2_{\rm valid}$!!)

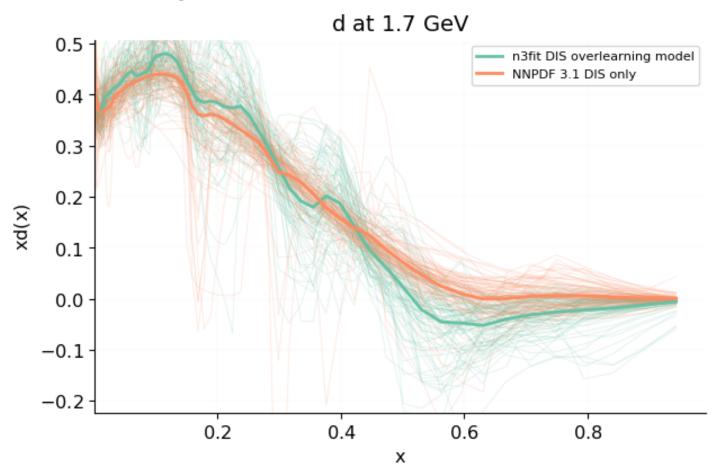
WHAT HAPPENED?


OPTIMIZATION

CROSS-VALIDATION SELECTS THE OPTIMAL MINIMUM

WHAT HAPPENED?

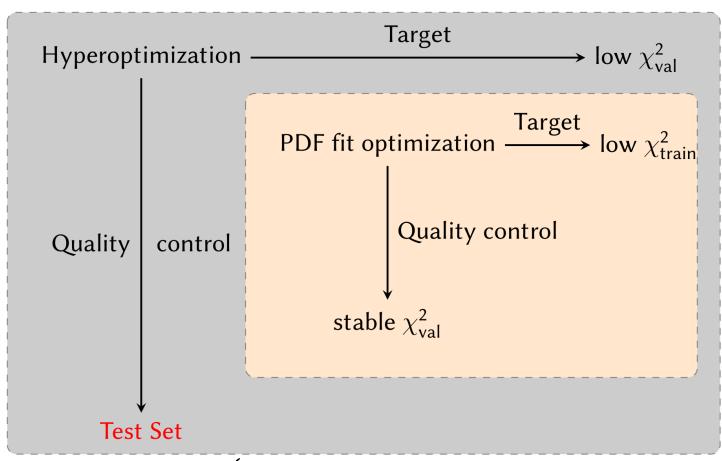
HYPEROPTIMIZATION



WE ARE MISSING A SELECTION CRITERION

FITTING THE METHODOLOGY

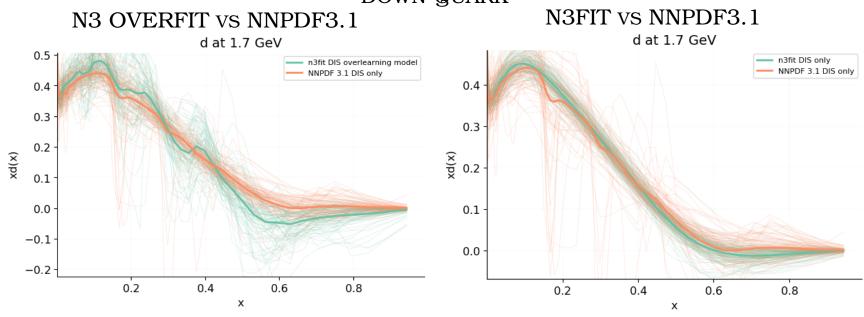
THE OVERFITTING PROBLEM


DOWN QUARK: HYPEROPTIMIZED VS. STANDARD

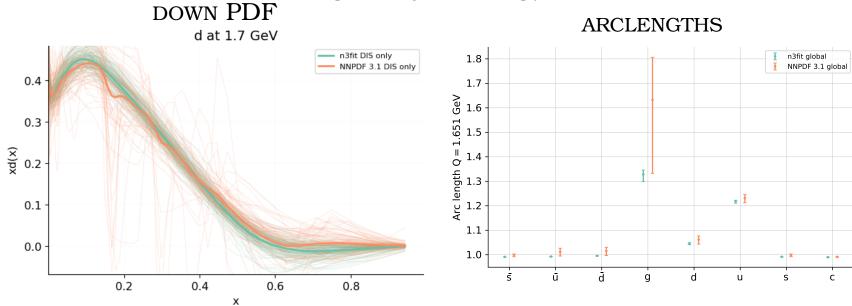
- NNPDF3.1: WIGGLES: FINITE SIZE \Rightarrow WILL GO AWAY AS N_{rep} GROWS
- N3FIT: WIGGLY PDFS \Leftrightarrow OVERFITTING \Rightarrow WILL NOT GO AWAY ($\chi^2_{\rm train} \ll \chi^2_{\rm valid}$!!)
- CORRELATIONS BETWEEN TRAINING AND VALIDATION DATA

MACHINE LEARNING THE SOLUTION

TUNED HYPEROPTIMIZATION



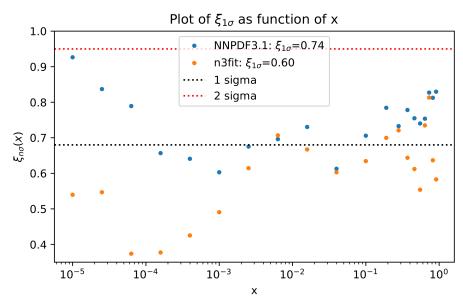
COMPARE TO A A TEST SET (NEW SET OF DATA PREVIOUSLY NOT USED AT AL) TESTS GENERALIZATION POWER


THE TEST SET METHOD

- COMPLETELY UNCORRELATED TEST SET
- ◆ OPTIMIZE ON WEIGHTED AVERAGE OF VALIDATION AND TEST
 ⇒ NO OVERLEARNING

OPTIMIZED PDFS DOWN QUARK

THE TEST SET METHOD N3FIT vs NNPDF3.1

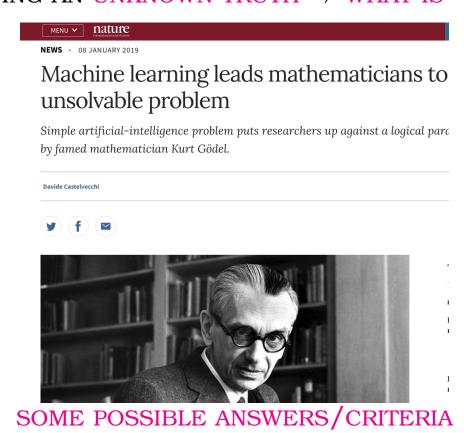

- NO OVERFITTING
- COMPARED TO NNPDF3.1
 - MUCH Greater stability \Rightarrow fewer replicas for equal accuracy
 - UNCERTAINTIES SOMEWHAT REDUCED

CLOSURE TESTS AGAIN

ONE σ : ACTUAL/PREDICTED FOR DATA, BY EXPERIMENT

	NNPDF3.1 ratio	n3fit ratio
experiment		
NMC	0.882828	0.843427
SLAC	0.767063	0.690118
BCDMS	0.730569	0.770704
CHORUS	0.698907	0.734656
NTVDMN	0.991090	0.797017
HERACOMB	0.847359	1.326333
HERAF2CHARM	1.867597	3.566076
F2BOTTOM	1.124157	1.532634
DYE886	0.655955	0.857915
DYE605	0.585725	0.870151
CDF	0.961652	0.779424
D0	0.881199	1.015202
ATLAS	0.904127	1.132229
CMS	1.090241	1.017136
LHCb	1.092194	0.993525
Total	0.842168	0.940737

- UNCERTAINTIES WELL ESTIMATED ON AVERAGE; BUT SIZABLE FLUCTUATIONS
- ONE σ PERFECT IN DATA REGION; BUT UNDERESTIMATED IN EXTRAPOLATION

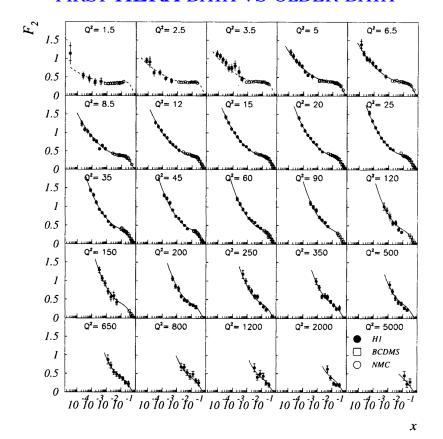

BEYOND THE STATE OF THE ART:

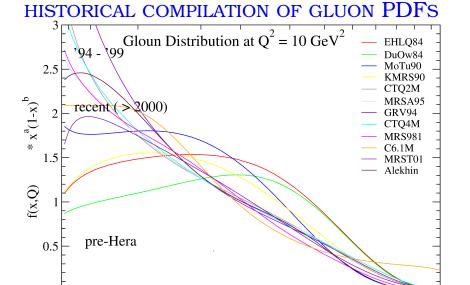
DREAMS

- WHAT IS THE UNCERTAINTY WHERE THERE IS NO DATA?
- WHAT IS THE UNCERTAINTY WHERE THERE IS NO THEORY?

ML THE UNKNOWN

WHAT IS "PROPER LEARNING"? FORECASTING AN UNKNOWN TRUTH ⇒ WHAT IS "OPTIMAL"?




- PASS A CLOSURE TEST
- REPRODUCE THE EXPECTED STATISTICAL PROPERTIES: ONE $\sigma \Leftrightarrow \Delta \chi^2 = 1$
- SATISFY THEORETICAL PREJUDICE?

PASS A "FUTURE TEST":
GENERALIZE TO CURRENT DATA BASED ON PAST DATA

THE "FUTURE TEST"

1995: THE RISE OF STRUCTURE FUNCTIONS AT HERA FIRST HERA DATA VS OLDER DATA

0.1

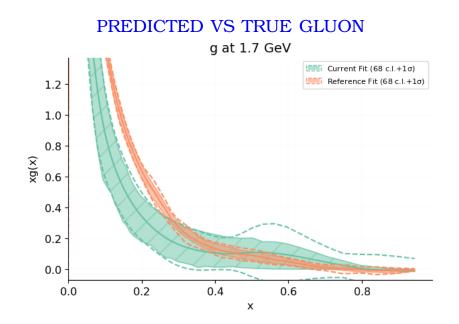
0.05

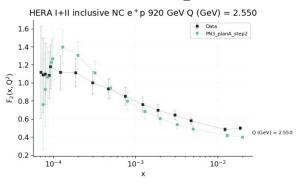
W.K.Tung, DIS 2004

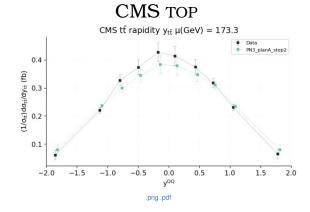
.5 .6 .7 .8

(Scale is linear in $x^{1/3}$)

A. de Roeck, Cracow epiphany conf. 1996

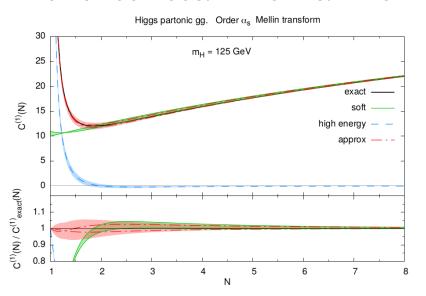

- RISE OF F_2 AT HERA CAME \Rightarrow SURPRIZE
- HINTED BY PRE-HERA DATA; VETOED BY PREJUDICE


COULD WE HAVE PREDICTED IT?


 $10^{-4} 10^{-3}$

THE N3FIT FUTURE TEST ONLY PRE-HERA DATA USED PREDICTION COMPARED TO DATA

HERA F_2


- N3FIT METHOLOGY APPLIED AND HYPEROPTIMIZED TO PRE-HERA DATASET
- RESULTS WITH PDF UNCERTAINTY COMPARED TO FUTURE DATA
- $\chi^2/\text{dat}=1.1$ On full predicted current dataset (ABOUT 200 DATAPOINTS)

SUCCESS! HOWEVER.... PREPROCESSING ⇒ TUNED METHODOLOGY

- GAUSSIAN PROCESSES? (KERNEL METHODS)
- REINFORCEMENT LEARNING

THEORY UNCERTAINTIES MISSING HIGHER ORDERS FROM RESUMMATION

N-SPACE GGHIGGS: APPROX VS. EXACT

 (au, p_T) RESUMMATION REGIONS

- THEORY UNCERTAINTIES ⇔ APPROXIMATE NEXT ORDER
- RESUMMATION ⇒ SINGULARITIES
- MATCHING THROUGH LSTM? (RECURRENT NN)

THE WORK OF MANY PEOPLE

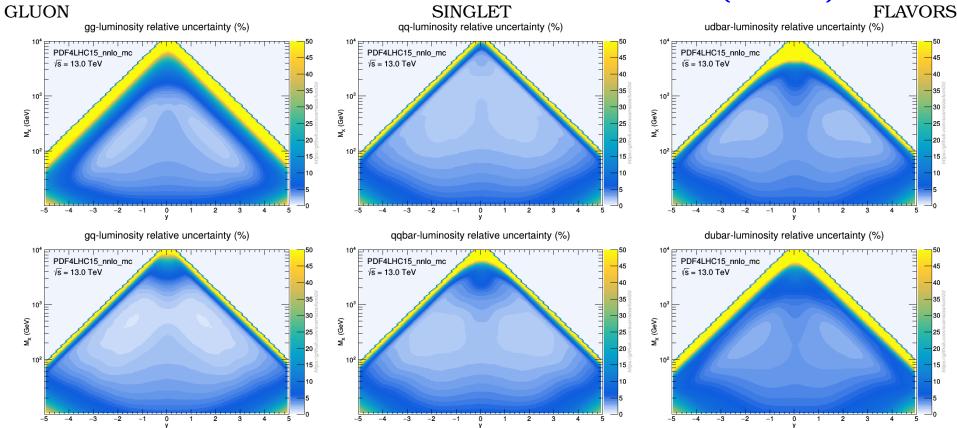
NNPDF collaboration and N³PDF team meeting, Varenna, Italy, September 2019

"Io stimo più il trovare un vero, benché di cosa leggiera, che il disputar lungamente delle massime questioni senza verità nissuna"

"I am more interested in uncovering a fact, however trifling, than to dispute at length about profound questions devoid of any truth"

Galileo Galilei, letter to Tommaso Campanella

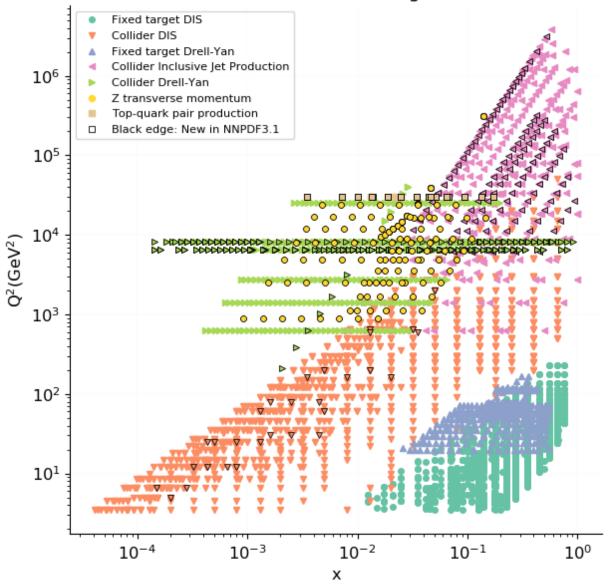
EXTRAS


CONTEMPORARY PDF TIMELINE (ONLY PUBLISHED GLOBAL)

	20	08	20	09	20	10	2011	20	12	20	13	20	14	2015	20	17	2019
SET	CTEQ6.6	NNPDF1.0©	WTSM	ABKM09	NNPDF2.0©	CT10 (NLO)	NNPDF2.1	ABM11	NNPDF2.3	CT10 (NNLO)	ABM12	NNPDF3.0	THMM	CT14	ABMP16	NNPDF3.1©	CT18
MONTH F. T. DIS	(02)	(08)	(01)	(08)	(02)	(07)	(07)	(02)	(07)	(02)	(10)	(10)	(12)	(06)	(01)	(06)	(12)
ZEUS+H1-HI	~	'	~	~	~	~	~	✓	~	~	✓	✓	/	~	/	/	'
COMB. HI	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	X	X	X	X	✓	X	some	X	✓	x some	✓	✓	X	X	~	✓	✓
ZEUS+H1-HII	X	X	X	X	X	X		X	X		X	✓	X	X	✓	/	/
HERA JETS	X	X	✓	X	X	X	X	X	X	X	X	X	✓	X	X	X	X
F. T. DY	V	X	✓	✓	✓	✓	✓	✓	✓	<	<	✓	✓	✓	✓	V	~
Tev W+Z	V	X	✓	X	✓	✓	✓	X	V	✓	X	✓	✓	✓	X	/	,
LHC W+Z	X	X	X	X	×	×	X	X	V	X	$_{ m some}$	✓	✓	✓	some	V	✓
TEV JETS	V	Х	✓	Х	V	V	Х	✓	V	V	Х	✓	V	V	Х	V	✓
LHC JETS	X	X	X	X	X	X	X	X	V	X	X	✓	V	V	×	V	,
TOP TOTAL	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	~	/	Х	Х	V	V	✓
SINGLE TOP TOTAL	X	X	X	X	X	Х	X	X	X	X	X	X	X	X	/	X	x
TOP DIFFERENTIAL	X	X	X	×	×	×	X	X	X	×	X	×	X	×	X	V	·
$W p_T$	Х	Х	X	Х	Х	Х	Х	X	Х	Х	Х	~	Х	Х	Х	Х	Х
W+c	X	X	X	X	X	X	X	X	X	X	X	<i>\rightarrow</i>	X	X	X	X	x
$Z p_T$	×	×	X	X	×	X	X	X	X	X	X	Х	X	X	X	· ·	· /

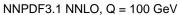
THEORY PROGRESS:

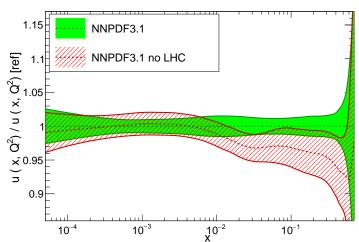
- MSTW, ABKM: all NNLO; NNPDF NNLO since 07/11 (2.1), CT since 02/13 (CT10); NNPDF THRESHOLD RESUMMATION (3.0RESUM, 07/15), SMALL x RESUMMATION (3.1SX, 10/17)
- MSTW, CT, NNPDF all GM-VFN; NNPDF since 01/11 (2.1); ABM FFN+ZM-VFN since 01/17 (ABMP16)
- NNPDF FITTED CHARM since 05/16 (NNPDF3IC)
- PHOTON PDF: (mrst2004qed), NNPDF2.3QED (08/13), NNPDF3.0QED (06/16), NNPDF3.1LUXQED (12/17)


PDF4LHC15: PDF UNCERTAINTIES (NNLO)

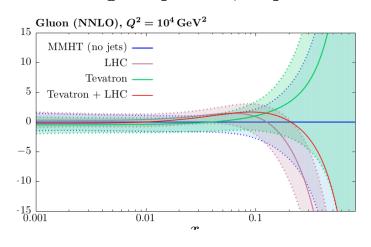
- ullet GLUON BETTER KNOWN AT SMALL x, VALENCE QUARKS AT LARGE x, SEA QUARKS IN BETWEEN
- TYPICAL UNCERTAINTIES IN DATA REGION $\sim 3-5\%$
- SWEET SPOT: VALENCE Q G; DOWN TO 1%
- UP BETTER KNOWN THAN DOWN; FLAVOR SINGLET BETTER THAN INDIVIDUAL FLAVORS
- NO QUALITATIVE DIFFERENCE BETWEEN NLO AND NNLO

DATASET WIDENING NNPDF3.0 vs NNPDF3.1

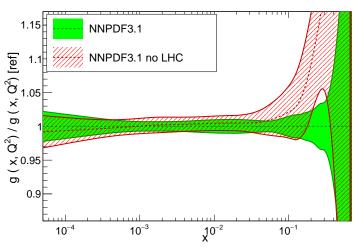

Kinematic coverage

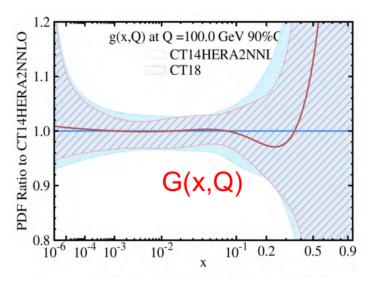


NEW DATA: (BLACK EDGE)


- HERA COMBINED F_2^b
- DO W LEPTON ASYMMETRY
- ATLAS W, Z 2011, HIGH & LOW MASS DY 2011; CMS W^{\pm} RAPIDITY 8TEV LHCB W, Z 7TEV & 8TEV
- ATLAS 7TeV JETS 2011, CMS 2.76TeV JETS
- ATLAS & CMS TOP DIFFERENTIAL RAPIDITY
- ATLAS Z p_T DIFFERENTIAL RAPIDITY & INVARIANT MASS 8TEV, CMS Z p_T DIFFERENTIAL RAPIDITY 8TEV

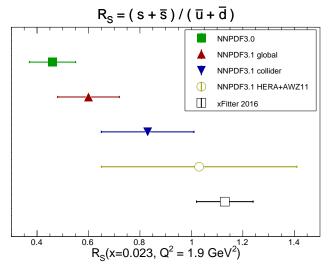
THE IMPACT OF LHC DATA
NEXT-GENERATION PDFS LARGELY DETERMINED BY LHC DATA: A FIRST!
NNPDF3.1 up
NNPDF3.1 glue



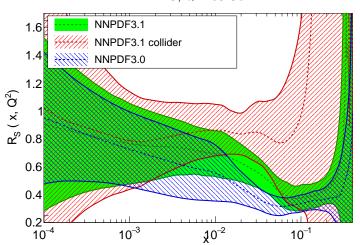

'MMHT' 19 glue (prelim., unpublished)

NNPDF3.1 NNLO, Q = 100 GeV

CT18 glue (preliminary, unpublished)

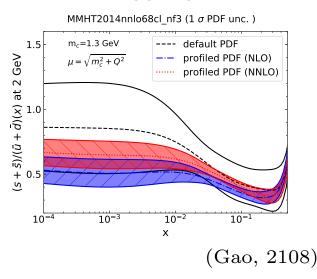

- SIGNIFICANT UNCERTAINTY REDUCTION
- MANY PDFS CHANGE BY MORE THAN ONE SIGMA
- BOTH FLAVOR SEPARATION & GLUON SIGNIFICANTLY AFFECTED

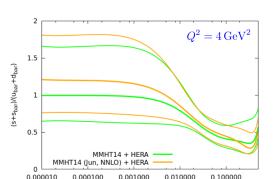
DATA VS. THEORY/METHODOLOGY THE STRANGE PDF: DIS VS. W PRODUCTION

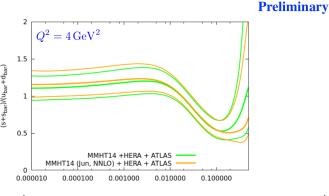

- STRANGE PDF CONTROLLED BY NEUTRINO DIS CHARM PRODUCTION +W PRODUCTION
- DIS DATA FAVOR "SUPPRESSED STRANGE" \Rightarrow SMALL $R_s \equiv \frac{s+\bar{s}}{\bar{u}+\bar{d}}$
- ATLAS FAVORS ENHANCED STRANGENESS
- ATLAS IMPACT EXAGGERATED IN XFITTER ANALYSIS
- EVERYTHING CONSISTENT WITHIN UNCERTAINTIES IN GLOBAL FIT

THE STRANGENESS SUPPRESSION

XFITTER VS HERA+ATLAS VS. DIS ONLY VS ATLAS
ONLY VS ALL


DIS ONLY VS ATLAS ONLY VS ALL NNLO, Q=1.38 GeV




DATA VS. THEORY/METHODOLOGY THE STRANGE PDF: DIS VS. W PRODUCTION

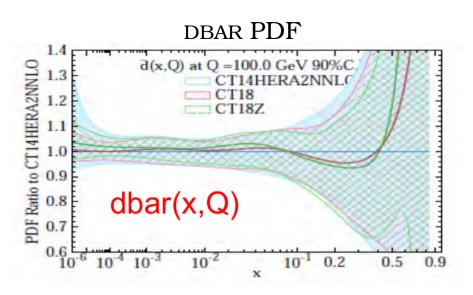
- MASSIVE CORRECTIONS TO CHARGED CURRENT DIS HITERTO INCLUDED TO NLO MASSLESS TO NNLO
- Gao, $2018 \Rightarrow NNLO$ COMPUTED
- STRANGENESS ENHANCED BY NNLO CORRECTIONS

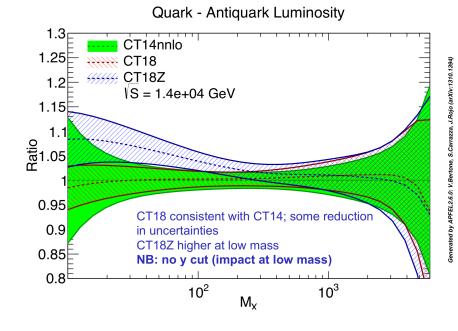
HERAPDF +NLO CC DIS VS NNLO CC DIS

MMHT WITH NLO VS NNLO CC DIS

(Harland-Lang, Thorne, prelim.)

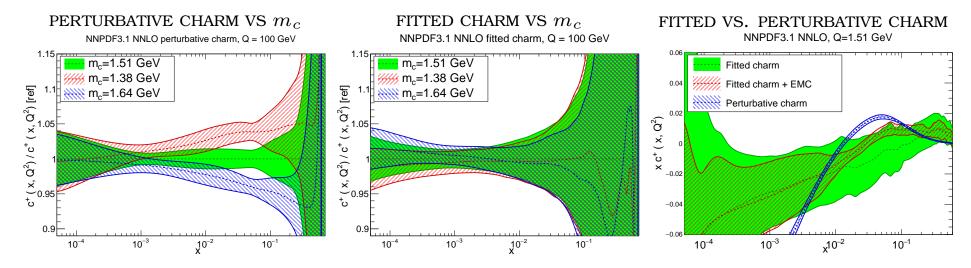
LESSONS:


- BEWARE OF XFITTER HERA+X FITS
- IN A GLOBAL FIT DIFFERENT DATA ALWAYS PULL IN DIFFERENT DIRECTIONS!
- TENSIONS CAN BE RESOLVED BY BETTER THEORY

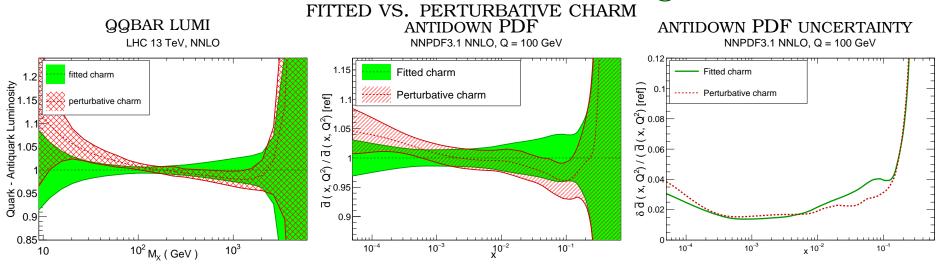

DATA VS. THEORY/METHODOLOGY THE CHARM MASS AND TREATMENT $CT18 \rightarrow CT18Z$

- ATLAS W AND Z 7TEV RAPIDITY INCLUDED
- CHARM MASS INCREASED
- x-dependent factorization scale

CT18 vs. CT18Z (preliminary, unpublished)


QQBAR LUMI

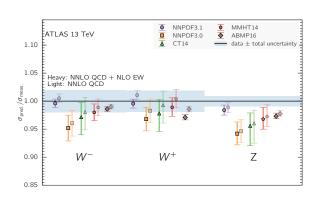
DATA VS. THEORY/METHODOLOGY THE CHARM MASS AND TREATMENT CHARM FROM DATA


CHARM SHOULD NOT DEPEND STRONGLY ON CHARM MASS

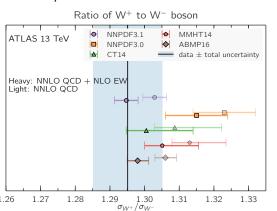
- ITS SHAPE SHOULD NOT BE DETERMINED BY FIRST-ORDER MATCHING (NO HIGHER NONTRIVIAL ORDERS KNOWN)
- MIGHT EVEN HAVE A NONPERTURBATIVE COMPONENT

FITTED VS. PERTURBATIVE: SUPPRESSED AT MEDIUM-SMALL x, ENHANCED AT VERY SMALL, VERY LARGE x

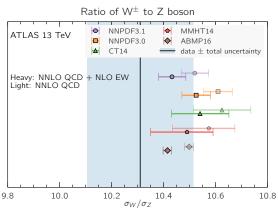
DATA VS. THEORY/METHODOLOGY THE CHARM MASS AND TREATMENT CHARM FROM DATA IMPACT ON LIGHT QUARK PDFS



- QUARK LUMI AFFECTED BECAUSE OF CHARM SUPPRESSION AT MEDIUM-x
- FLAVOR DECOMPOSITION ALTERED
- UNCERTAINTIES ON LIGHT QUARKS NOT SIGNIFICANTLY INCREASED
- AGREEMENT OF 13TeV W,Z PREDICTED CROSS-SECTIONS IMPROVES!


DATA VS. THEORY/METHODOLOGY THE CHARM MASS AND TREATMENT

CHARM FROM DATA


DRELL-YAN XSECTS

 W^+/W^- XSECT RATIO

W/Z XSECT RATIO

 \bullet W, Z cross-sections at 13 TeV in Perfect agreement with data THANKS TO FITTED CHARM!

LESSONS:

- TENSIONS CAN REVEAL METHODOLOGICAL ISSUES
- MORE LIKELY AS DATASET INCREASES, EXPERIMENTAL UNCERTAINTIES DECREASE
- RESOLVED BY MORE COMPLEX METHODOLOGY

DATA vs. METHODOLOGY

- NEW DATA ⇒ MAJOR METHODOLOGICAL CHOICES ⇒ SIGNIFICANT IMPACT
- NNPDF3.1 vs NNPDF3.0: data and methodology have similar impact

NNPDF3.0 vs. NNPDF3.1 vs. NNPDF3.1 w/ NNPDF3.0 DATASET DOWN GLUON

NNLO, Q = 100 GeV

1.15

NNPDF3.1

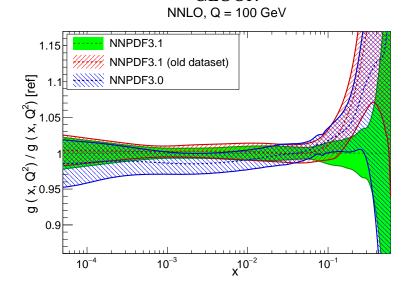
NNPDF3.1 (old dataset)

NNPDF3.0

O

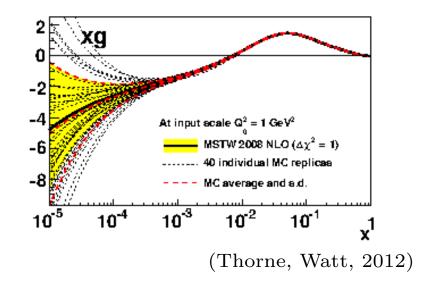
x 0.95

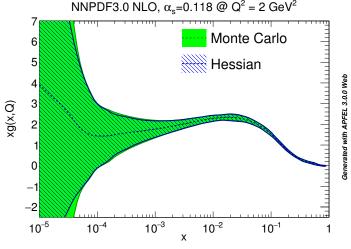
D


0.9

10⁻⁴

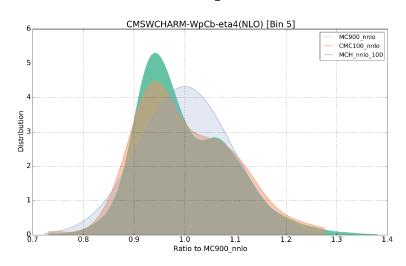
10⁻³


x 10⁻²


10⁻¹

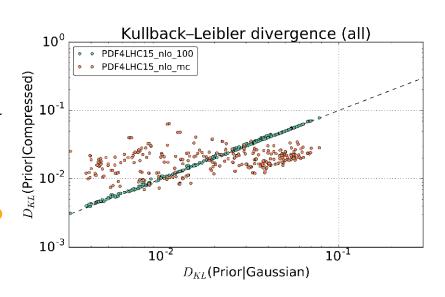
$MC \Leftrightarrow HESSIAN$

- TO CONVERT HESSIAN INTO MONTECARLO GENERATE MULTIGAUSSIAN REPLICAS IN PARAMETER SPACE
- ACCURATE WHEN NUMBER OF REPLICAS SIMILAR TO THAT WHICH REPRODUCES DATA



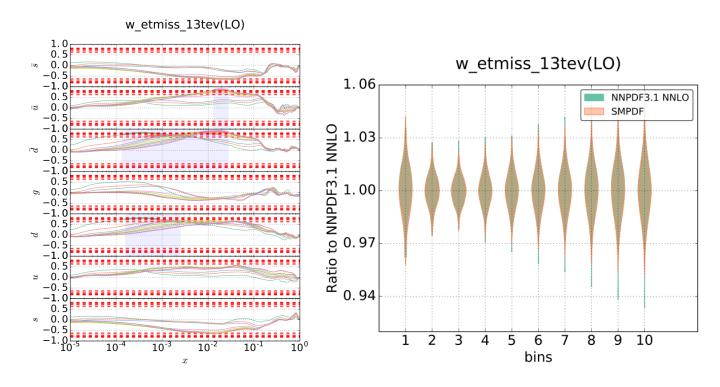
(Carrazza, SF, Kassabov, Rojo, 2015)

- TO CONVERT MONTE CARLO INTO HESSIAN, SAMPLE THE REPLICAS $f_i(x)$ AT A DISCRETE SET OF POINTS & CONSTRUCT THE ENSUING COVARIANCE MATRIX
- EIGENVECTORS OF THE COVARIANCE MATRIX AS A BASIS IN THE VECTOR SPACE SPANNED BY THE REPLICAS BY SINGULAR-VALUE DECOMPOSITION
- NUMBER OF DOMINANT EIGENVECTORS SIMILAR TO NUMBER OF REPLICAS ⇒ ACCURATE REPRESENTATION


TOOLS II NONGAUSSIAN BEHAVIOUR

MONTE CARLO COMPARED TO HESSIAN CMS W+c production

- DEVIATION FROM GAUSSIANITY E.G. AT LARGE x DUE TO LARGE UNCERTAINTY + POSITIVITY BOUNDS \Rightarrow RELEVANT FOR SEARCHES
- CANNOT BE REPRODUCED IN HESSIAN FRAMEWORK
- WELL REPRODUCED BY COMPRESSED MC


- DEFINE KULLBACK-LEIBLER DIVERGENCE $D_{\mathrm{KL}} = \int_{-\infty}^{\infty} P(x) \frac{\ln P(x)}{\ln Q(x)} \, dx$ BETWEEN A PRIOR P AND ITS REPRESENTATION Q
- D_{KL} BETWEEN PRIOR AND HESSIAN DEPENDS ON DEGREE OF GAUSSIANITY
- D_{KL} between prior and compressed MC does not

CAN (A) GAUGE WHEN MC IS MORE ADVANTAGEOUS THAN HESSIAN; (B) ASSESS THE ACCURACY OF COMPRESSION

TOOLS III OPTIMIZED PDFS: SMPDF

- OLD ASPIRATION: PDFs OPTIMIZED TO PROCESSES (Pumplin 2009)
- SELECT SUBSET OF THE COVARIANCE MATRIX CORRELATED TO A GIVEN SET OF PROCESSES
- PERFORM SVD ON THE REDUCED COVARIANCE MATRIX, SELECT DOMINANT EIGENVECTOR, PROJECT OUT ORTHOGONAL SUBSPACE
- ITERATE UNTIL DESIRED ACCURACY REACHED
- CAN ADD PROCESSES TO GIVEN SET: CAN COMBINE DIFFERENT OPTIMIZED SETS
- Web interface available

(Carrazza, SF, Kassabov, Rojo, 2016)

- EG ggH, $Hb\bar{b}$, W $E_T^{\rm miss} \Rightarrow 11$ EIGENVECTORS
- STUDY CORRELATIONS OF PDFs TO DATA AND AMONG THEMSELVES!