

Outline

- DarkSide-50 detector design;
- Recent results:
 - DarkSide-50 532-day Dark Matter Search with Low-Radioactivity Argon Phys. Rev. D 98 (10), 102006 (2018);
 - Low-mass Dark Matter Search with DarkSide-50 Experiment Phys. Rev. Lett. 121 (8), 081307 (2018);
 - Constraints on Sub-GeV Dark Matter-Electron Scattering from the DarkSide-50 Experiment Phys. Rev. Lett. 121 (11), 111303 (2018);
- Future DarkSide program;
- Conclusions.

The DarkSide program at LNGS

38 PMTs

DS-50 (Running) ~50 kg

2 MBs 50 PDMs **1200 SiPMs**

DS - Proto-0

~10kg: S2 study with SiPMs as photosensors

18 MBs 370 PDMs ~9000 SiPMs

344 MBs

8280 PDMs

~200000 SiPMs

Darkside - Proto

1ton: to validate DS-20k in mechanical and functional aspect

DS-20k 20t fiducial

DarkSide-50

The Gran Sasso massif provides 3800 m.w.e. passive shielding against cosmic rays

11m-diameter, 10m-tall, 1 kt Water Čerenkov Detector (WCD) instrumented with 80 8"-PMTs provides active shielding against µ's

4m-diameter 30 t borated Liquid Scintillator Veto (LSV) instrumented with 110 8"-PMTs provides additional active shielding against γ 's, n's and μ 's

...these all surround the inner detector, the Time Projection Chamber (TPC)

DarkSide-50 Dual-phase TPC

- Cylindrical shape of 35.6 cm radius x 35.6 cm height x 2.54 cm thick with PTFE reflector walls;
- TetraPhenyl Butadiene (TPB) wavelenght shifter on the walls;
- 19 3"-PMTs in the top and 19 on the bottom with cold amplifiers;
- Drift Field: 0.2 kV/cm
- Extraction Field: 2.8 kV/cm

DarkSide-50 Dual-phase TPC

DarkSide-50 Dual-phase TPC

High mass WIMP search: blind analysis

- Blind analysis of about 532 live-days of WIMP search data;
- blinded region
 defined on 70
 live-days of data from
 Phys. Rev. D 93,
 081101 (2016);
- design a background free analysis (< 0.1 background events in the WIMP search box).

Physical Review D 98 (10), 102006 (2018)

Blind analysis: unblinded data

High mass WIMP search: results

- Exposure = 532 live days x 31.3 kg = 16660 kg*days
- 1.14×10^{-44} cm² @ 100 GeV
- Underground Ar (UAr) activity ~ 0.7 mBq/kg
- LY ~ 8 PE/keV

Low mass WIMP search: S2-only analysis

- Use S2 signal only:
 - give up S1 signal, PSD, vertical position and S2/S1;
 - lower detection threshold to single electron;
 - sensitivity to lower mass dark matter (~1.8 GeV/c²);
- Trigger efficiency and pulse finding efficiency are 100% for S2 > 30 PE.

S2-only analysis: NR (*in-situ*) energy calibration

- In-situ calibration with ²⁴¹Am ¹³C source;
- low rate source with little γ activity;
- find NR scale by fitting simulated spectrum to data and background distribution;
- allow measure down to 4 Ne⁻ threshold.

- *In-situ* calibration with ²⁴¹AmBe source;
- high rate source: neutrons produced with associated γs;
- find NR scale by fitting simulated spectrum to data with 4.4 MeV γ in LSV detector;
- deep at low Ne due to LSV data available only for S1 triggers. Joint fit with AmC data for Ne⁻>50.

S2-only analysis: ER/NR energy calibration

- Excellent low-energy ER calibration point from ³⁷Ar:
 - from cosmogenic activation (t_{1/2} ~ 35 days);
 - 0.27 keV L-shell and 2.82 keV K-shell following e⁻ capture in ³⁷Ar.

- Ionization yield from NR energy:
 - measured with DS-50 neutron calibrations and neutron beam experiments like SCENE and ARIS;
 - no knowledge of ionization yield at low energy recoil neither of the shape of charge distribution (probably with ReD, see next).

S2-only analysis: Ne spectrum

- Analysis threshold at Ne⁻ > 4;
- excess below Ne⁻ ~ 4 due to trapped electrons;
- expected signal assumes standard DM halo;
- uncertainties in signal dominated by fluctuations in ionization yield.

S2-only analysis: results

90 % CL upper limits on WIMP-nucleon cross section

The future of Dark Matter Direct Detection with LAr: DarkSide-20k

The case for DarkSide-20k: WIMPs NR in LAr

The case for DarkSide-20k: Background

If the number of background events is < 0.1, assuming the correct model, then as few as five events would claim discovery!

DarkSide-20k: underground Argon

DarkSide-20k: sensitivity to WIMPs

- ERs < 0.005 evts/5PE*bin
- ~ 10^6 simulated evts from both NRs and 39 Ar β -decay and β/γ 's in the energy range 7 50 keV_{ee} in ROI
- Expected 10 PE/keV LY at null fields and 9 PE/keV at 200 V/cm drift field from β/γ's

DarkSide-20k: projected sensitivity

- Exposure = 100 (200) t yr ~ 5 (10) yrs run
- $1.2 \times 10^{-47} \text{ cm}^2 (7.4 \times 10^{-48} \text{ cm}^2) @ 1 \text{ TeV}$
- Expected ~ 3.2 evts from CEvNS

DarkSide-20k: detector overview

- ProtoDUNE like cryostat
- Optical and EM barrier
- Neutron veto will use Gd doped acrylic panels and Atmospheric Argon (AAr)
- Inner TPC will be a sealed acrylic vessel containing UAr
- Separate cryogenic systems for UAr and AAr volumes
- Acrylic knowledge from DEAP-3600 is being implemented
- 30 m² of SiPM scintillation detecting surface (8280 channels for TPC and ~3000 channels for Veto)

DarkSide-20k: SiPMs

- Designed for LAr by combined effort between DarkSide and Fondazione Bruno Kessler (FBK);
- compact and high coverage;
- high SNR (> 8);
- high PDE (~50%);
- massive production by LFoundry and packaging of PDMs in NOA, L'Aquila;
- full production chain largely funded by Regione Abruzzo, Italy.

DarkSide-20k: the neutron veto

- 4π coverage;
- 10 cm thick passive Gd-loaded acrylic shell to moderate and capture neutrons;
- 40 cm thick inner and outer active liquid AAr volumes to detect gamma cascade due to neutron capture on Gd;
- Faraday cage to optically and electrically isolate both veto and TPC;
- vertical segmentation to reduce pileup rate of ³⁹Ar (1Bq/kg in AAr) event from AAr and ESR foil as reflector to maximize light collection;
- all internal surface of each sector coated with TPB as wavelength shifter.

DarkSide-20k: the cryostat

- Developed at CERN for ProtoDUNE neutrino experiment;
- membrane and passive thermal insulation;
- maturated technique adopted from the Liquified Natural Gas carriers and vessels;
- access and support of TPC and Veto from top roof;
- penetrations on top roof determined by the requirements of all subsystems.

DarkSide R&D: the UAr

- Urania: procurement at least 60 tonnes of UAr from Colorado, USA (extraction rate of 250 kg/day, 99.9% purity);
- Aria: UAr shipped to Sardinia, Italy, for chemical purification via a 350 m tall cryogenic distillation column in the former Seruci Mine:
 - process ~1 tonnes/day with 1000 reduction of all chemical impurities and isotopically separate ³⁹Ar from ⁴⁰Ar.

DarkSide R&D: the ReD experiment

- Main goal: irradiate a small LAr TPC with neutrons and produce recoil parallel or orthogonal wrt the E field in order to probe the directionality of NR in liquid argon;
- How: neutron beam is produced at INFN Laboratori Nazionali del Sud (LNS) in Catania
 by the 15 MV Tandem via the p(⁷Li,n) reaction;
- Bonus: direct measurement of low energy nuclear recoil with the same TPC by tuning appropriately the beam and the geometry setups.

- ReD saw beam in June and July 2018:
 - for 6 nA of ⁷Li and 0.2 mg/cm² target of CH₂: ~10⁵ n/s (expected);
 - TPC-beam: 22°, TPC-LSci: 37°;
 - TPC rate: ~Hz;
 - TPC+LSci: a few 100's of ev/day/ nA expected);
- new physics run just concluded (14 Feb. 2020), analysis in progress.

Summary and Conclusions

- DarkSide-50 at LNGS: LAr TPC technology proven competitive for a wide range of WIMP masses:
 - Physical Review D 98 (10), 1022006 (2018): background free analysis
 of high-mass WIMP search data;
 - best exclusion limit from a LAr experiment for WIMP-nucleon cross section > 1.1 x 10⁻⁴⁴ cm² @ 100 GeV/c²;
 - best sensitivity limit from a LAr experiment in the field of low mass WIMP search in the range of 1.8-6 GeV/c²:
 Physical Review Letters 121 (8), 081307 (2018) and Physical Review Letters 121 (11), 111303 (2018);
- Ambitious dark matter search program with the Global Argon Dark Matter Collaboration (DarkSide-Proto, DarkSide-20k, ...).

ENJOY THE DARK SIDE!