

Università degli Studi di Bari "Aldo Moro"

DIPARTIMENTO INTERATENEO DI FISICA "MICHELANGELO MERLIN"

cherenkov

array

TESI DI LAUREA MAGISTRALE IN "PHYSICS" Development of muon identification algorithms and atmospheric calibration for the **Cherenkov Telescope Array Relatori:** Laureanda: Prof. Francesco Giordano **Roberta Pillera** Dott. Leonardo Di Venere

Outline

- **1.** Muon identification on LST
- 2. Muon identification algorithms on ASTRI-CHEC
- 3. Muon identification parameters on LST-1 May data
- 4. Conclusions

Muon identification algorithms on LST

- Currently used identification: Chaudhuri Kundu
 - Analytical calculation (repeated 2-3 times)
 - Identification based on ring radius

slow processing rate (18.86 ± 7.56) Hz*
 *speed evaluated on a single image
 Alternative algorithms:

• Taubin fit

✓ fast

 \checkmark possibly more reliable than an analytical calculation

Neural Network

✓ fast

x lower efficiency wrt other methods

- Majority
 - very fast, good for tagging

Parameters for muon identification

Parameters to identify muon signal and test algorithms (obtained with full analysis, except radius):

- 1.0 ° < *r* < 1.5 ° Radius •
 - 0.2 $R_{mir} < \rho < 0.9 R_{mir}$ Impact parameter
- Ring (pixel) completeness
- Size outside ring

at least 0.7 > 200 pe

Additional parameters (no active cuts applied, but monitored):

- ring width
- ring size

•

Note: distributions are scaled to proton flux

selected events with Taubin

Muon identification on LST: Taubin fit

- circle fit to compute center and radius
- minimization of $\xi = \frac{\sum ((x - x_c)^2 + (y - y_c)^2 - r^2)^2}{\sum ((x - x_c)^2 + (y - y_c)^2)}$
- cut on radius
 1.0° < r < 1.5°
- > efficiency > 90%
- processing rate
 (199.50 ± 30.20) Hz

muon signal with full analysis

Muon identification on LST: Majority

Comparison to a threshold of:

size: sum of p.e. of each pixel

double threshold on image size

• number of pixels above a given p.e. threshold (distributions are not separated)

selected events with Majority muon candidates

Muon identification on LST: Majority

- thresholds at 90% efficiency
- processing rate (157.15 ± 0.14) kHz
- Preselecting rings with Majority:
 => full analysis
 computational time
 reduced by 1/2 !

muon signal with full analysis

Muon identification on ASTRI-CHEC

Similar discussion as for LST Trigger pattern readout possible -> **Muon trigger**

	efficiency	processing rate
 Taubin fit (both trigger and full image) 	> 90 %	(74.80 ± 7.77) Hz
 Neural Network (only trigger image) 	> 90 %	(1.31 <u>+</u> 0.02) kHz
 Majority (only trigger image) 	> 90 %	(60.18 <u>+</u> 0.15) kHz
Expected camera trigger rate: 0.6 – 1 kHz & method is simple		

hardware implementation possible!

LST-1 data (preliminary): parameters

Run 442 May 2019

LST-1 data (preliminary): size

Run 442 May 2019

- probem with calibration
- different integration LocalPeakWindowSum instead of NeighborPeak...
- Improve this when analyzing new runs

LST-1 data (preliminary): muon efficiency plots (for reference) Run 442 May 2019

10

Conclusions

- **1.** The Taubin fit is a viable ring fit alternative (faster, reliable)
- 2. Majority is ideal for preselection: online (trigger) and offline
- **3.** Possible optimized muon identification pipeline:
 - 1. preselection with Majority
 - 2. fit with Taubin

What's next:

1. Test on Crab campaign data

Thanks for your attention!

LST-1: run 442 event id 72370

standard

signal MC energy

🔲 taubin

10¹

10⁰

Radius LST

Parameters for muon identification

2. Optical efficiency calibration using muons – Roberta Pillera

Ring completeness

2. Optical efficiency calibration using muons – Roberta Pillera

Ring completeness

Muon MC

Proton MC

2. Optical efficiency calibration using muons – Roberta Pillera

Size outside ring

size outside < 200 p.e.

Ring width

Neural network input

Neural Network on parameters

Neural Network results

Size and pixel above threshold LST

Efficiency and purity of Majority

Muon flux and scaling

$$w(E) = \frac{dN_{real}/dE}{dN_{sim}/dE} \cdot A\Omega$$

Trigger size ASTRI-CHEC

Majority ASTRI – CHEC

MC sample ASTRI – CHEC

ASTRI – CHEC

radius and center

Size and size outside

Size before and after cleaning

Neural Network ASTRI – CHEC

