The FCC Option

<u>Outline</u>

<u>F. Bedeschi, INFN</u> Roma3, January 29, 2020

Very brief motivations
FCCee
Machine and physics
FCChh
Machine and physics
Schedule and costs
Final comments

	ATLAS SUSY Searches* - 95% CL Lower Limits									ATLAS Preliminary $\sqrt{s} = 13$ TeV	
	Model	S	ignatur	e .	∫£ dt [fb⁻	'] Ma:	ss limit				Reference
s	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_1^0$	0 e, μ mono-jet	2-6 jets 1-3 jets	$E_T^{ m miss}$ $E_T^{ m miss}$	36.1 36.1	 \$\hfrac{q}{q}\$ [2x, 8x Degen.] \$\hfrac{q}{q}\$ [1x, 8x Degen.] 	0.43	0.9	1.55	m(ž ⁰ ₁)<100 GeV m(ž)-m(ž ⁰ ₁)=5 GeV	1712.02332 1711.03301
arche	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	36.1	Ř Ř		Forbidden	2.0 0.95-1.6	m(ℓ̃ 1)<200 GeV m(ℓ̃ 1)=900 GeV	1712.02332 1712.02332
'e Se	$\bar{g}\bar{g}, \bar{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	3 е, µ ее, µµ	4 jets 2 jets	$E_T^{\rm miss}$	36.1 36.1	Ř Ř			1.85 1.2	m(𝔅˜₁)<800 GeV m(𝔅)-m(𝔅¯₁)=50 GeV	1706.03731 1805.11381
clusiv	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 e,μ SS e,μ	7-11 jets 6 jets	E_T^{miss}	36.1 139	ğ ğ		1	1.8 15	m(𝔅̃)·<400 GeV m(𝔅̃)·m(𝔅̃))=200 GeV	1708.02794 ATLAS-CONF-2019-015
rl L	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_1^0$	0-1 e,μ SS e,μ	3 b 6 jets	E_T^{miss}	79.8 139	i de la companya de l			1.25	2.25 m(\tilde{t}_1^0)<200 GeV m(\tilde{g})-m(\tilde{t}_1^0)=300 GeV	ATLAS-CONF-2018-041 ATLAS-CONF-2019-015
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 {\rightarrow} b \tilde{\chi}_1^0 / b \tilde{\chi}_1^+$		Multiple Multiple Multiple		36.1 36.1 139	δ ₁ Forbidden δ ₁ δ ₁	Forbidden Forbidden	0.9 0.58-0.82 0.74	m($\begin{array}{c} m(\tilde{\chi}_{1}^{0}) {=} 300 \ \mathrm{GeV}, \ BR(b\tilde{\chi}_{1}^{0}) {=} 1\\ m(\tilde{\chi}_{1}^{0}) {=} 300 \ \mathrm{GeV}, \ BR(b\tilde{\chi}_{1}^{0}) {=} BR(\tilde{\chi}_{1}^{4}) {=} 0.5\\ \tilde{\chi}_{1}^{0}) {=} 200 \ \mathrm{GeV}, \ m(\tilde{\chi}_{1}^{4}) {=} 300 \ \mathrm{GeV}, \ BR(b\tilde{\chi}_{1}^{0}) {=} 1 \end{array}$	1708.09266, 1711.03301 1708.09266 ATLAS-CONF-2019-015
rks ion	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}^0_2 \rightarrow b h \tilde{\chi}^0_1$	0 e, μ	6 <i>b</i>	$E_T^{\rm miss}$	139	$ar{b}_1$ Forbidden $ar{b}_1$	0.23-0.48	C	23-1.35	$\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV}$	SUSY-2018-31 SUSY-2018-31
^d gen. squa	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb \tilde{\chi}_1^0$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{t}_1 b \nu, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{c}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0-2 e, μ 1 e, μ 1 τ + 1 e,μ, 0 e, μ	0-2 jets/1-2 3 jets/1 b 7 2 jets/1 b 2 c	$b \ E_T^{miss} \\ E_T^{miss} \\ E_T^{miss} \\ E_T^{miss} \\ E_T^{miss} $	36.1 139 36.1 36.1	 <i>i</i>₁ <i>i</i>₁ <i>i</i>₁ <i>ē</i> 	0.44-0	1.0 .59 0.85	.16	m{{c}_1^p} = 1 GeV m{{t}_1^p} = 400 GeV m{{t}_1^p} = 800 GeV m{{t}_2^p} = 0 GeV	1506.08616, 1709.04183, 1711.11520 ATLAS-CONF-2019-017 1803.10178 1805.01649
σš	initial sector sector	0 e, µ	mono-jet	E_T^{miss}	36.1	\tilde{t}_1 \tilde{t}_1	0.46 0.43			$m(\tilde{r}_1, \tilde{c}) - m(\tilde{\chi}_1^0) = 50 \text{ GeV}$ $m(\tilde{r}_1, \tilde{c}) - m(\tilde{\chi}_1^0) = 5 \text{ GeV}$	1805.01649 1711.03301
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$ $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	1-2 e, μ 3 e, μ	4 b 1 b	$E_T^{ m miss}$ $E_T^{ m miss}$	36.1 139	ĩ ₂ ĩ ₂	Forbidden	0.32-0.88 0.86		$m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}, m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0})=180 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=360 \text{ GeV}, m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0})=40 \text{ GeV}$	1706.03986 ATLAS-CONF-2019-016
	$\hat{x}_1^{\pm} \hat{x}_2^0$ via WZ	2-3 e, μ ee, μμ	≥ 1	E_T^{miss} E_T^{miss}	36.1 139	$ \frac{\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}}{\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}} = 0.205 $		0.6		$m(\tilde{k}_{1}^{0})=0$ $m(\tilde{k}_{1}^{*})-m(\tilde{k}_{1}^{0})=5 \text{ GeV}$	1403.5294, 1806.02293 ATLAS-CONF-2019-014
3	$\bar{\chi}_1^{\pm} \bar{\chi}_1^{\mp}$ via WW $\bar{\chi}_1^{\pm} \bar{\chi}_2^{0}$ via Wh	2 e,μ 0-1 e,μ	2 bi2 γ	E_T^{miss} E_T^{miss}	139 139	$ \vec{X}_{1}^{\pm} $ $ \vec{X}_{1}^{\pm}/\vec{X}_{2}^{0} $ Forbidden	0.42	0.74		$m(\tilde{\chi}_{1}^{0})=0$ $m(\tilde{\chi}_{1}^{0})=70 \text{ GeV}$	ATLAS-CONF-2019-008 ATLAS-CONF-2019-019, ATLAS-CONF-2019-XYZ
EW	$\chi_1 \chi_1$ via ℓ_L / ν $\tilde{\tau} \tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$	2 ε,μ 2 τ	0.1.1	E_T E_T^{miss}	139	x1 τ τ τ τ	0.12-0.39	1.0		$m(\ell, \nu)=0.5(m(\ell_1)+m(\ell_1))$ $m(\ell_1^0)=0$	ATLAS-CONF-2019-008 ATLAS-CONF-2019-018
	$\ell_{1,R}\ell_{1,R}, \ell \to \ell \chi_1^c$	2 e, μ 2 e, μ	≥ 1	E_T^{miss} E_T^{miss}	139 139	<i>t</i> <i>t</i> 0.256		0.7		$m(\tilde{\ell}_{1}^{0})=0$ $m(\tilde{\ell})-m(\tilde{\chi}_{1}^{0})=10 \text{ GeV}$	ATLAS-CONF-2019-008 ATLAS-CONF-2019-014
	$HH, H \rightarrow hG/ZG$	0 e, μ 4 e, μ	$\geq 3 b$ 0 jets	E_T^{miss} E_T^{miss}	36.1 36.1	й 0.13-0.23 й 0.3		0.29-0.88		$BR(\tilde{\chi}_1^0 \rightarrow h\tilde{G})=1$ $BR(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})=1$	1806.04030 1804.03602
lived	$\text{Direct}\tilde{\chi}_1^{*}\!\tilde{\chi}_1^{-}\text{prod., long-lived}\tilde{\chi}_1^{*}$	Disapp. trk	1 jet	E_T^{miss}	36.1		0.46			Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
Long-	Stable ĝ R-hadron Metastable ĝ R-hadron, ĝ→qq∛1		Multiple Multiple		36.1 36.1	ğ ğ [τ(ğ) =10 ns, 0.2 ns]			2.0	5 2.4 m(\tilde{x}_1^o)=100 GeV	1902.01636,1808.04095 1710.04901,1808.04095
N No	$ \begin{array}{l} LFV \ pp \rightarrow \tilde{\mathbf{y}}_{\tau} + X, \ \tilde{\mathbf{y}}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp} / \tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\nu\nu \\ \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \ \tilde{\chi}_{1}^{0} \rightarrow qqq \end{array} $	еµ,ет,µт 4 е,µ 4	0 jets I-5 large- <i>R</i> je Multiple	E_T^{miss} ets	3.2 36.1 36.1 36.1	$ \begin{array}{l} \widetilde{r}_{1} \\ \widetilde{X}_{1}^{b}/\widetilde{X}_{2}^{b} = [\lambda_{j,13} \neq 0, \lambda_{124} \neq 0] \\ \\ \widetilde{g} = [m(\widetilde{X}_{1}^{b}) - 200 \text{ GeV}, 1100 \text{ GeV}] \\ [\widetilde{X}_{112}^{c} - 2e-4, 2e-5] \end{array} $		0.82	1.9 1.33 1.3 1.9 i 2.0	$\begin{array}{c} \mathcal{X}_{311}'=0.11,\mathcal{A}_{132/133/233}=0.07\\ m(\tilde{x}_{1}^{0})=100~\text{GeV}\\ \text{Large}\mathcal{A}_{112}''\\ m(\tilde{x}_{1}^{0})=200~\text{GeV},\text{bino-like} \end{array}$	1607.08079 1804.03602 1804.03568 ATLAS-CONF-2018-003
æ	$\begin{array}{l} \tilde{t}\tilde{t},\tilde{t} \rightarrow \tilde{t}\tilde{\chi}_{1}^{0},\tilde{\chi}_{1}^{0} \rightarrow tbs\\ \tilde{t}_{1}\tilde{t}_{1},\tilde{t}_{1} \rightarrow bs\\ \tilde{t}_{1}\tilde{t}_{1},\tilde{t}_{1} \rightarrow q\ell \end{array}$	2 e,μ 1 μ	Multiple 2 jets + 2 b 2 b DV	6	36.1 36.7 36.1 136	$\begin{array}{l} g & [\lambda'_{333}=2e{\cdot}4, 1e{\cdot}2] \\ \hline \tilde{t}_1 & [qq, bs] \\ \hline \tilde{t}_1 & [1e{\cdot}10{<}\lambda'_{21k} {<}1e{\cdot}8, 3e{\cdot}10{<}\lambda'_{21k} \\ \end{array}$	0.55 0.42 (<3e-9]	5 1.0 0.61 1.0	0.4-1.45 1.6	m(k_1^0)=200 GeV, bino-like BR($\bar{t}_1 \rightarrow be/b\mu$)>20% BR($\bar{t}_1 \rightarrow \mu$)=100%, cos θ_i =1	ATLAS-CONF-2018-003 1710.07171 1710.05544 ATLAS-CONF-2019-006
Only	a selection of the available mas omena is shown. Many of the l	ss limits on limits are ba	new state ased on	s or	1	0-1			1	Mass scale [TeV]	

F. Bedeschi, INFN-Pisa

ituto Nazionale Fisica Nucleare

Roma3, January 29, 2020

2

ATLAS SUSY Searches* - 95% CL Lower Limits

Overview of CMS EXO results July 2019 36 fb⁻¹ (13 TeV) Mode Signature (L dt [fb-1] Mass limit CMS SSM Z'(LL 1803.06292 (21) М, 4.5 $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$ 0 e. u 2-6 jets 36. E_T^{miss} E_T^{miss} SSM Z'(qq) 806.00843 (2j) M2 1-3 jets 36.1 LFVZ', BR(eu) = 10% M-802.01122 (eu 44 0 e, µ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$ 2-6 jets Emiss 36.1 803.11133 (# + E SSM W'(tv) M., SSM W(aā) M., 1806.00843 (2i) $\bar{g}\bar{g}, \bar{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$ 3 e, µ 4 jets 36.1 55M W'(TV) 1807.11421 (T + E E_T^{miss} Ma ee. µµ 2 jets 36.1 $LRSM W_{e}(IN_{e}), M_{H_{e}} = 0.5M_{H_{e}}$ 803 11116 (2/ + 2) 44 0 7-11 jets $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_{1}^{0}$ E_T^{mi} 36.1 LRSM $W_{\pi}(\tau N_{\pi}), M_{N_{\pi}} = 0.5 M_{\text{vir}}$ Ma 1811.00806 (2T+2i 3.5 SS e.u 6 jets 139 Axigluon, Coloron, $cot\theta = 1$ 6.1 806.00843 (2j) 0-1 e, µ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\chi}_1^0$ 3 b Emis 79.8 SS e.u 6 jets 139 scalar LQ (pair prod.), coupling to 1^{st} gen. fermions, $\beta = 1$ 144 1811.01197 (2e+ 2i Me scalar LQ (pair prod.), coupling to 1^{st} gen, fermions, B = 0.51811.01197 (2e+ 2j; e + 2j + E_T^{minn}) 1.27 Multiple Me $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / b \tilde{\chi}_1^0$ 36.1 scalar LQ (pair prod.), coupling to 2^{nd} gen. fermions, $\beta = 1$ 1808.05082 (2µ+2j) 153 Multiple 36.1 0.58-0.8 M. Multiple 139 scalar LQ (pair prod.), coupling to 2^{nd} gen. fermions, $\beta = 0.5$ 1808.05082 (2 u + 2i; u + 2i + Emiss) 1.29 м scalar LO (pair prod.), coupling to 3^{rd} gen, fermions, $\beta = 1$ $1811 00806 (2\tau + 2i)$ M. $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$ 0 e. u 64 Emis 139 scalar LQ (single prod.), coup. to 3rd gen. ferm., $\beta = 1, \lambda = 1$ 0.23-0.48 м 1806.03472 (2T+b 0.74 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0$ 0-2 e, µ 0-2 jets/1-2 b E_Tmiss 36. excited light quark (gg), $\Lambda = m_{1}^{2}$ 1806.00843 (2) $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb \tilde{\chi}_1^0$ 1 e.µ 3 jets/1 b Emis 139 0.44-0.59 excited light quark (qy), $f_5 = f = f' = 1$. $\Lambda = m^2$ M 711.04652 (y + j 55 ET $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 hy, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$ 1 T + 1 e.u.T 2 jets/1 b 36.1 excited b quark, $f_5 = f = f' = 1$, $\Lambda = m_0^2$ 1711.04652 (v + i M. 0 e, µ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$ 20 Emis 36.1 0.8 excited electron, $f_5 = f = f' = 1, \Lambda = m_1^2$ 1811.03052 (**y** + 2e M excited muon, $f_5 = f = f' = 1$, $\Lambda = m_{ij}^*$ 0 mono-iet Fmis 36.1 0.43 M. 1811.03052 (v + 21 1-2 e. µ $\tilde{t}_2\tilde{t}_2,\,\tilde{t}_2{\rightarrow}\tilde{t}_1+h$ 4h1-miss 36. 0.32-0 1803.08030 (2i) 12.8 guark compositeness ($q\bar{q}$), $n_{\text{LURR}} = 1$ Λ., $\tilde{i}_2 \tilde{i}_2, \tilde{i}_2 \rightarrow \tilde{i}_1 + Z$ 3 e. µ Emis 139 1bForbidden 0. guark compositeness (11), nume = 1 1812 10443 (2/) Λ⁺_{1.8} $\hat{\chi}_1^{\dagger} \hat{\chi}_2^0$ via WZ 2-3 e. µ ET Emiss 36.1 0.6 guark compositeness ($q\bar{q}$), $n_{\rm EURR} = -1$ AL.S 1803.08030 (2j) 17.5 ee, µµ ≥ 1 139 0.205 guark compositeness (11), $n_{\rm LUBB} = -1$ 1812.10443 (21) 31 Emiss $\tilde{X}_{1}^{\pm}\tilde{X}_{1}^{\mp}$ via WW 2 e. u 139 0.42 ADD (ii) HLZ, $n_{ED} = 3$ 1803.08030 (2j) $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh 0-1 e.u 2 b/2 y Emiss 139 $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ 0.74 Forbidden ADD $(\gamma\gamma, ll)$ HLZ, $n_{ep} = 3$ 1812.10443 (2y, 20 9.1 $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via $\tilde{\ell}_L / \tilde{\nu}$ 2 e, µ Emiss 139 M. ADD G_{xx} emission, n = 2712.02345 (≥ 1j + E^{min} 21 Emiss 139 TI TRI] 0.16-0.3 0.12-0.39 M $\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$ ADD QBH (jj), $n_{ED} = 6$ 803.08030 (2j) 0 jets E_T^{miss} E_T^{miss} Men 2 e. µ 139 $\tilde{l}_{1,R}\tilde{l}_{1,R}, \tilde{l} \rightarrow l\tilde{\chi}_{1}$ 0.7 ADD QBH ($e\mu$), $n_{ED} = 6$ 2 e. µ 802.01122 (eµ ≥ 1 139 0 256 Mon RS $G_{\text{scc}}(q\bar{q}, qg), k/\overline{M}_{\text{Pl}} = 0.1$ M-1806.00843 (2i) 18 $\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$ 0 e. u >36 E_T^{miss} E_T^{miss} 36.1 36.1 0.13-0.23 0.29-0 $BSG_{m}(H) k/\overline{M}_{m} = 0.1$ 803.06292 (2/) 425 4 e, µ 0 iets Mc. RS $G_{\text{RC}}(\gamma\gamma)$, $k/\overline{M}_{\text{Pl}} = 0.1$ 809.00327 (2v 4.1 M RS OBH (ij), n= 1 Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^+$ Disapp. trk 1 jet Emis 36.1 0.46 Mon 803 08030 (2i) 0.15 RS OBH (eu), n== 1 802.01122 (eu 36 805.06013 (≥ 7j(ℓ,γ) Stable # R-hadron Multiple non-rotating BH, Mp = 4 TeV, nep = 6 36.1 M ... Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\xi}_1^0$ Multiple 36.1 split-UED, µ≥4 TeV 803.11133 (*l* + E_T^{mins}) LEV $pp \rightarrow \tilde{y}_{*} + X, \tilde{y}_{*} \rightarrow euler/ut$ eu.et.ut 3.2 (axial-)vector mediator ($\chi\chi$), $g_q = 0.25$, $g_{DM} = 1$, $m_\chi = 1$ GeV 1712.02345 (> 1i + E" Mmer 18 0 jets $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$ 4 e. µ E_T^{miss} 36.1 (axial-)vector mediator ($q\ddot{q}$), $g_q = 0.25$, $g_{DM} = 1$, $m_\chi = 1$ GeV 1806.00843 (2j) Mon $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qaq$ 4-5 large-R jets 36.1 scalar mediator (+ $t/t\bar{t}$), $g_q = 1$, $g_{DM} = 1$, $m_x = 1$ GeV Mened $1901.01553 (0, 1l + \ge 3j + E_T^{min}) = 0.29$ Multiple 36.1 pseudoscalar mediator (+t/tt), $q_n = 1$, $q_{nut} = 1$, $m_n = 1$ GeV M..... $1901.01553 (0, 1l + \ge 3j + E_T^{min}) = 0.3$ $\tilde{t}\tilde{t}, \tilde{t} \rightarrow t \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow t bs$ Multiple 36.1 scalar mediator (fermion portal), $\lambda_{\nu} = 1, m_{\nu} = 1 \text{ GeV}$ M_e 712.02345 (≥ 1j + E_T^{mins}) 14 2 iets + 2 b 36.7 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$ 0.61 complex sc. med. (dark QCD), $m_{n_{DK}} = 5 \text{ GeV}$, $c\tau_{x_{eK}} = 25 \text{ mm}$ 1810.10069 (4j) 1.54 Mr. $\tilde{t}_1\tilde{t}_1,\tilde{t}_1{\rightarrow}q\ell$ 20.1 2 b 36.1 1μ DV 136 Type III Seesaw, $B_e = B_\mu = B_\mu$ 0.84 1708.07962 (> 34 Maran 806.00843 (**2**j) string resonance 7.7 10.0 01 10 10^{-1} mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on plified models, c.f. refs. for the accur

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included)

7

January 2019

Istituto Nazionale di Fisica Nucleare

Roma3, January 29, 2020

Roma3, January 29, 2020

Higgs properties SM-like. After HL-LHC precision level of several % Granada 2019 \sqrt{s} = 14 TeV, 3000 fb⁻¹ per experiment ATLAS and CMS Total Statistical **HL-LHC** Projection Experimental Uncertainty [%] Theory Tot Stat Exp Th Kγ 1.8 0.8 1.0 1.3 κ_w 1.7 0.8 0.7 1.3 KZ 1.5 0.7 0.6 1.2 κ_g 2.5 0.9 0.8 2.1 Kt 3.4 0.9 1.1 3.1 Kh 3.7 1.3 1.3 3.2 K_T 1.9 0.9 0.8 1.5 κ_u 4.3 3.8 1.0 1.7 $\kappa_{Z\gamma}$ 9.8 7.2 1.7 6.4 0.02 0.04 0.08 0 0.06 0.1 0.12 0.14 Expected uncertainty

F. Bedeschi, INFN-Pisa

Roma3, January 29, 2020

Higgs properties SM-like.

- After HL-LHC precision level of several %
- **>** Deviation from SM: $\delta \sim v^2/M^2$ v = 246 GeV

M scale of new physics

 $\blacksquare M \sim 1 - 10 \text{ TeV} \quad \Rightarrow \delta \sim 6 - 0.06\%$

Higgs properties SM-like.

- After HL-LHC precision level of several %
- Deviation from SM: $\delta \sim v^2/M^2$ v = 246 GeV
 - M scale of new physics
 - $\blacksquare M \sim 1 10 \text{ TeV} \quad \Rightarrow \delta \sim 6 0.06\%$

Need $< \sim \%$ sensitivity \rightarrow beyond HL-LHC

Roma3, January 29, 2020

Current physics landscape

- No (additional) signs of BSM physics.
 - After intensive searches at LHC
- Higgs properties SM-like.
 - At current precision level of several %
- ... but SM is an insufficient description

Current physics landscape

- No (additional) signs of BSM physics.
 - After intensive searches at LHC
- Higgs properties SM-like.
 - At current precision level of several %
- ... but SM is an insufficient description
 - Prevalence of matter over anti-matter.
 - Not explained by current values of CKM elements
 - ▶ Neutrinos have masses not acquired in the SM.
 - Compelling evidence for the existence of dark matter in the Universe with no candidate particle(s) in the SM.
- What new machine in this scenario?

Current directions

ICFA statement - Tokyo, March 2019:

"ICFA confirms the international consensus that the highest priority for the next global machine is a "Higgs Factory" capable of precision studies of the Higgs boson.

ICFA notes with satisfaction the great progress of the various options for Higgs factories proposed across the world. All options will be considered in the European Strategy for Particle Physics Update and by ICFA.

ICFA report – LP2019, Toronto, August 2019:

- Worldwide effort for e+e- Higgs Factory must not fail!
 - Linear or Circular
 - Asia or Europe (or elsewhere?)

Recent comments on ESPPU preparations (B. Vachon – LP2019)

- Emerging consensus for the importance of a "Higgs factory" to fully explore properties of the Higgs, EW sector, etc.
- Need to prepare a clear path towards highest energy.

Roma3, January 29, 2020

FCC integrated program can respond to these requests in an optimal way

FCC integrated program can respond to these requests in an optimal way

Comprehensive program to optimize physics opportunities

- Comprehensive program to optimize physics opportunities
 - Stage 1: FCC-ee (Z, W, H, tt)
 - Higgs factory, EW and top factory at highest luminosities.

The FCC integrated program

Comprehensive program to optimize physics opportunities

Stage 1: FCC-ee (Z, W, H, tt)

Higgs factory, EW and top factory at highest luminosities.

Stage 2: FCC-hh (~100 TeV)

Natural continuation at energy frontier, with ion and eh options.

Complementary physics

Common civil engineering and technical infrastructures

Integrating an ambitious high-field magnet R&D program

I

The e+e- machine

7

Roma3, January 29, 2020

Double ring e+e- collider ~ 100 km

- RF power limited to 50 MW/beam
- ▶ 2 IP currently 4 IP possible

ofe Cenero Double ring e+e- collider ~ 100 km . LHC ► RF power limited to 50 MW/beam Jura ► 2 IP currently - 4 IP possible **Prealps** Booster ring for top up injection A (IP) Schematic of an 30 mrad 80 - 100 km FCC-hh long tunnel B 13.4 m 10.6 m Booster 0.3 m **Aravis** FCC-hh / Booster G_y (m) J (RF) D (RF) Mandalaz Copyright CERN 2014 ---FCC-hh ---FCC-e-FCC-e+ FCO C-o -1000 -500 500 1000 G_x (m) Η F G (IP)

Roma3, January 29, 2020

FCCee parameters

parameter	Z	ww	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1390	147	29	5.4
no. bunches/beam	16640	2000	393	48
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.3
SR energy loss / turn [GeV]	0.036	0.34	1.72	9.21
total RF voltage [GV]	0.1	0.44	2.0	10.9
long. damping time [turns]	1281	235	70	20
horizontal beta* [m]	0.15	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.46
vert. geom. emittance [pm]	1.0	1.7	1.3	2.9
bunch length with SR / BS [mm]	3.5 / 12.1	3.0 / 6.0	3.3 / 5.3	2.0 / 2.5
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	230	28	8.5	1.55
beam lifetime rad Bhabha / BS [min]	68 / >200	49 / >1000	38 / 18	40 / 18

- SR power 50 MW/beam
- Total site power <300 MW</p>

Roma3, January 29, 2020

Luminosity comparisons

Roma3, January 29, 2020

F. Bedeschi, INFN-Pisa

Istituto Nazionale di Fisica Nucleare

♦ Higgs factory
> $10^6 \text{ e+e-} \rightarrow \text{HZ}$

★ Higgs factory
> 10⁶ e+e- → HZ
★ EW & Top factory
> 5x10¹² e+e- → Z
> 10⁸ e+e- → W+W- ;
> 10⁶ e+e- → tt

Higgs factory $\rightarrow 10^6 \text{ e}+\text{e}- \rightarrow \text{HZ}$ **EW & Top factory** > 5x10¹² e+e- \rightarrow Z $\succ 10^8 \text{ e+e-} \rightarrow \text{W+W-};$ $> 10^6 \text{ e+e-} \rightarrow \text{tt}$ Flavor factory $ightarrow 10^{12} \text{ e+e-} \rightarrow \overline{\text{bb, cc}}$ $> 10^{11} \text{ e}+\text{e}- \rightarrow \tau+\tau-$

Higgs factory $\rightarrow 10^6 \text{ e} + \text{e} - \rightarrow \text{HZ}$ EW & Top factory > 5x10¹² e+e- \rightarrow Z $> 10^8 \text{ e}+\text{e}- \rightarrow \text{W}+\text{W}-$; $> 10^6 \text{ e+e-} \rightarrow \text{tt}$ Flavor factory $> 10^{12} \text{ e+e-} \rightarrow \text{bb, cc}$ \succ 10¹¹ e+e- $\rightarrow \tau + \tau$ -

Potential discovery of NP

 \triangleright ALPs, RH v's, ...

Roma3, January 29, 2020

Higgs production

Roma3, January 29, 2020

F. Bedeschi, INFN-Pisa

INF

Istituto Nazionale di Fisica Nucleare

Higgs production

Roma3, January 29, 2020

12

F. Bedeschi, INFN-Pisa

IN

Istituto Nazionale di Fisica Nucleare

Higgs total width

2000

120

130

140

Recoil mass (GeV)

150

100

90

110

stituto Nazionale di Fisica Nucleare

Higgs total width

ituto Nazionale Fisica Nucleare

Higgs total width

Higgs recoil provides model independent measurement of coupling to Z

 $ightarrow \sigma(HZ) \propto g^2_{HZ}$

Critical:

Beam energy spread: SR+BS

Total width combining with decays in specific channels

$$\sigma(ee \to ZH) \cdot BR(H \to ZZ) \propto \frac{g_{HZ}^4}{\Gamma}$$

IDEA: Higgs recoil Δ E/E = .136%

 $L = 5 ab^{-1}$

Higgs coupling fits

Collider	HL-LHC	ILC_{250}	$\operatorname{CLIC}_{380}$	$CEPC_{240}$	FCC-ee _{240\rightarrow365}
Lumi (ab^{-1})	3	2	1	5.6	5 + 0.2 + 1.5
Years		11.5^{5}	8	7	3+1+4
$g_{\rm HZZ}$ (%)	$1.5 \ / \ 3.6$	$0.29 \ / \ 0.47$	$0.44 \ / \ 0.66$	$0.18 \ / \ 0.52$	0.17 / 0.26
$g_{\rm HWW}$ (%)	1.7 / 3.2	$1.1 \ / \ 0.48$	$0.75 \ / \ 0.65$	$0.95 \ / \ 0.51$	0.41 / 0.27
g_{Hbb} (%)	$3.7 \ / \ 5.1$	$1.2 \ / \ 0.83$	$1.2 \ / \ 1.0$	$0.92 \ / \ 0.67$	0.64 / 0.56
$g_{ m Hcc}$ (%)	SM / SM	$2.0 \ / \ 1.8$	$4.1 \ / \ 4.0$	$2.0 \ / \ 1.9$	1.3 / 1.3
g_{Hgg} (%)	$2.5 \ / \ 2.2$	$1.4 \ / \ 1.1$	$1.5 \ / \ 1.3$	$1.1 \ / \ 0.79$	0.89 / 0.82
$g_{\mathrm{H} au au}$ (%)	$1.9 \ / \ 3.5$	$1.1 \ / \ 0.85$	$1.4 \ / \ 1.3$	1.0 / 0.70	0.66 / 0.57
$g_{\mathrm{H}\mu\mu}$ (%)	$4.3 \ / \ 5.5$	$4.2 \ / \ 4.1$	4.4 / 4.3	3.9 / 3.8	3.9 / 3.8
$g_{\mathrm{H}\gamma\gamma}$ (%)	$1.8 \ / \ 3.7$	$1.3 \ / \ 1.3$	$1.5 \ / \ 1.4$	$1.2 \ / \ 1.2$	1.2 / 1.2
$g_{\mathrm{HZ}\gamma}$ (%)	11. / 11.	11. / 10.	11. / 9.8	6.3 / 6.3	10. / 9.4
$g_{\rm Htt}$ (%)	$3.4 \ / \ 2.9$	2.7 / 2.6	2.7 / 2.7	2.6 / 2.6	2.6 / 2.6
$g_{\rm HHH}$ (%)	50. / 52.	28. / 49.	45. / 50.	17. / 49.	19. / 34.
$\Gamma_{\rm H}$ (%)	SM	2.4	2.6	1.9	1.2
BR_{inv} (%)	1.9	0.26	0.63	0.27	0.19
BR_{EXO} (%)	SM(0.0)	1.8	2.7	1.1	1.0

Roma3, January 29, 2020

F. Bedeschi, INFN-Pisa

IN

EIFI

Istituto Nazionale di Fisica Nucleare

Higgs coupling fits

Results limited only by statistics

No direct production @ FCC-ee Sensitivity through loop effects

Roma3, January 29, 2020

No direct production @ FCC-ee

No direct production @ FCC-ee

EWK

Outstanding program of precision EWK measurements > O(10-100) better than LEP precision

Substantially reduce parametric uncertainties in theory

Observable	Present value \pm error	FCC-ee Stat.	FCC-ee Syst.	Comment and dominant exp. error	
m _Z (keV)	$91,186,700 \pm 2200$	5	100	From Z line shape scan Beam energy calibration	1
Γ_Z (keV)	$2,495,200 \pm 2300$	8	100	From Z line shape scan Beam energy calibration	
R_{ℓ}^{Z} (×10 ³)	$20,767\pm25$	0.06	0.2-1.0	Ratio of hadrons to leptons acceptance for leptons	
$\alpha_{\rm s} \ ({\rm m_Z}) \ (\times 10^4)$	1196 ± 30	0.1	0.4-1.6	From R_{ℓ}^{Z} above [43]	
R _b (×10 ⁶)	$216,\!290\pm 660$	0.3	< 60	Ratio of bb to hadrons stat. extrapol. from SLD [44]	
$\sigma_{\rm had}^0$ (×10 ³) (nb)	$41,541 \pm 37$	0.1	4	Peak hadronic cross-section luminosity measurement	7 pole
N_{ν} (×10 ³)	2991 ± 7	0.005	1	Z peak cross sections Luminosity measurement	
$\sin^2 \theta_W^{\text{eff}}$ (×10 ⁶)	$231,480 \pm 160$	3	2-5	From $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration	
$1/\alpha_{QED} (m_Z) (\times 10^3)$	$128,952 \pm 14$	4	Small	From $A_{FB}^{\mu\mu}$ off peak [34]	
$A_{FB}^{b,0}$ (×10 ⁴)	992 ± 16	0.02	1-3	b-quark asymmetry at Z pole from jet charge	
$A_{FB}^{pol,\tau}$ (×10 ⁴)	1498 ± 49	0.15	< 2	τ Polarisation and charge asymmetry τ decay physics	
m _W (MeV)	$80,350 \pm 15$	0.5	0.3	From WW threshold scan Beam energy calibration	
Γ_W (MeV)	2085 ± 42	1.2	0.3	From WW threshold scan Beam energy calibration	WW
$\alpha_{\rm s} \ ({\rm m_W}) \ (\times 10^4)$	1170 ± 420	3	Small	From R_{ℓ}^{W} [45]	
N_{ν} (×10 ³)	2920 ± 50	0.8	Small	Ratio of invis. to leptonic in radiative Z returns	
mtop (MeV)	$172,740\pm500$	17	Small	From tt threshold scan QCD errors dominate	
Γ_{top} (MeV)	1410 ± 190	45	Small	From tt threshold scan QCD errors dominate	
$\lambda_{top}/\lambda_{top}^{SM}$	1.2 ± 0.3	0.1	Small	From tt threshold scan QCD errors dominate	
ttZ couplings	$\pm 30\%$	0.5-1.5%	Small	From $E_{CM} = 365 \text{ GeV run}$	

EWK examples

uto Nazional

♦ W mass/width \rightarrow 0.5/1.2 MeV resolution

 WW threshold scan/ direct measurements check and improve
 ★ Top quark mass/width → 17/45 MeV resolution
 > tt threshold scan – N³LO, ISR and FCCee luminosity spectrum F. Bedeschi, INFN-Pisa

EWK examples

S, T parameters (Peskin–Takeuchi)

Comparison of Higgs factories

NP sensitivity from EFT fits

From exclusive fits Reach to several 10's TeV

Istituto Nazionale di Fisica Nucleare

Roma3, January 29, 2020

NP sensitivity from EFT fits

From exclusive fits
Reach to several 10's TeV

Theory uncertainties
Parametric~ exp. precision
Theory precision need
3 loop Z pole
2 loop WW

tituto Nazionale Fisica Nucleare

Heavy flavors

Large heavy flavor production at Z pole

Particle production (10^9)	B^0	B^{-}	B_s^0	Λ_b	$c\overline{c}$	$\tau^{-}\tau^{+}$
Belle II	27.5	27.5	n/a	n/a	65	45
FCC-ee	400	400	100	100	800	220

Very clean, well separated, pairs

Heavy flavors

Large heavy flavor production at Z pole

Particle production (10^9)	B^0	B^{-}	B_s^0	Λ_b	$c\overline{c}$	$\tau^{-}\tau^{+}$
Belle II	27.5	27.5	n/a	n/a	65	45
FCC-ee	400	400	100	100	800	220

Roma3, January 29, 2020

Direct NP search example: HNL

◆ HNL mix with active neutrino's
> Fully reconstructable decay with W
> Small mixing → long lifetime

IN

ituto Nazionale Fisica Nucleare

Direct NP search example: HNL

lstituto Nazionale di Fisica Nucleare

 $10 \text{ cm} < c\tau < 100 \text{ cm}$ 10^{12} Z

Direct NP search example: HNL

ituto Nazional

 $10 \text{ cm} < c\tau < 100 \text{ cm}$ 10^{12} Z

 $0.01 \text{ cm} < c\tau < 500 \text{ cm}$ 10^{13} Z

Roma3, January 29, 2020

I

The pp machine

Roma3, January 29, 2020

FCChh parameters

parameter	FC	C-hh	HE-LHC	HL-LHC	LHC
collision energy cms [TeV]	1	100	27	14	14
dipole field [T]		16	16	8.33	8.33
circumference [km]	9	7.75	26.7	26.7	26.7
beam current [A]		0.5	1.27	1.1	0.58
bunch intensity [10 ¹¹]	1 1		2.5	2.2	1.15
bunch spacing [ns]	25 25		25	25	25
synchr. rad. power / ring [kW]	2	400	101	7.3	3.6
SR power / length [W/m/ap.]	2	8.4	4.1	0.33	0.17
long. emit. damping time [h]	0	.54	1.8	12.9	12.9
beta* [m]	1.1	0.3	0.45	0.15 (min.)	0.55
normalized emittance [µm]	2.2		2.5	2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5 30		16	5 (lev.)	1
events/bunch crossing	170 1000		460	132	27
stored energy/beam [GJ]		8.4	1.4	0.7	0.36

Total site power <600 MW</p>

Roma3, January 29, 2020

FCChh key facts

O(x10) E and L
100 TeV
20 ab⁻¹/exp.
In 25 years
Key tech. issue:
High field magnets
20 T with HTS

LHC technology 8.3 T NbTi

Roma3, January 29, 2020

FCChh magnets

Magnet development: magnet models production

FCC Status Michael Benedikt CERN, 13 January 2020

25 1

FCChh magnets

US – MDP: 14 T magnet tested at FNAL

- 15 T dipole demonstrator
- Staged approach: In first step prestressed for 14 T
- Second test foreseen in fall 2019 with additional pre-stress for 15 T

FCC Status Michael Benedikt CERN, 13 January 2020

Roma3, January 29, 2020

26

Exploration potential

Search reach scaled from HL-LHC (2-3 TeV for SUSY)

Roma3, January 29, 2020

Search reach scaled from HL-LHC (2-3 TeV for SUSY)

Roma3, January 29, 2020

26

Exploration potential

Search reach scaled from HL-LHC (2-3 TeV for SUSY)

I

Exploration potential

Search reach scaled from HL-LHC (2-3 TeV for SUSY)

Roma3, January 29, 2020

Dark matter

Dark matter (simplified models)

100 TeV pp could cover all parameter space allowed by cosmological bounds M McCullough ECC week 2016

Roma3, January 29, 2020

FCC-ee + FCC-hh schedule

Roma3, January 29, 2020

FCC costs

Domain	Cost in MCHF	Share to Civil England an
Stage 1 - Civil Engineering	5,400	19%
Stage 1 - Technical Infrastructure	2,200	Stage 1 Technical Infrastructure Stage 2 FCC-hh Machine
Stage 1 - FCC-ee Machine and Injector Complex	<mark>4,000</mark>	8% and Injector complex 47%
Stage 2 - Civil Engineering complement	600	Stage 1 FCC-ee Machine and Injector Complex 14%
Stage 2 - Technical Infrastructure adaptation	2,800	
Stage 2 - FCC-hh Machine and Injector complex	13,600	Infrastructure adaptation 10%
TOTAL construction cost for integral FCC project	<mark>28,</mark> 600	Stage 2 Civil Engineering complement 2%

Total cost FCCee: 10,600 MCHF
 Addition for tt 1,100 MCHF
 Total additional cost for FCChh: 17,000 MCHF
 Stand alone ~25 BCHF

ESG main scenarios

5 basic options for the future being explored by ESG

	2020-2040	2040-2060	2060-2080	
		1st gen technology	2nd gen technology	
CLIC-all	HL-LHC	CLIC380-1500	CLIC3000 / other tech	
CLIC-FCC	HL-LHC	CLIC380	FCC-h/e/A (Adv HF magnets) / other tech	
FCC-all	HL-LHC	FCC-ee (90-365)	FCC-h/e/A (Adv HF magnets) / other tech	
LE-to-HE-FCC-h/e/A	HL-LHC	LE-FCC-h/e/A (low-field magnets)	FCC-h/e/A (Adv HF magnets) / other tech	
LHeC-FCC-h/e/A	HL-LHC + LHeC	LHeC	FCC-h/e/A (Adv HF magnets) / other tech	

CERN funding:

First 3 scenarios: 10-13% CERN budget in 2025-2045

Civil engineering assumed outside of CERN budget

→ 4th scenario: ~20% CERN budget in 2025-2045

▶ 5th scenario is within the regular CERN budget

Last 2 scenarios assume that an e+e- collider is built outside of Europe

Roma3, January 29, 2020

Schedule comparisons

U. Bassler

Roma3, January 29, 2020

Istituto Nazionale di Fisica Nucleare

Major physics potential at FCC-ee

- Study Higgs x10 better than HL-LHC
- EWPO x10-100 better than LEP
- ► HF studies complementary to LHC-b/Belle II

Major physics potential at FCC-ee

- Study Higgs x10 better than HL-LHC
- EWPO x10-100 better than LEP
- ► HF studies complementary to LHC-b/Belle II

Matches right time scale immediately after HL-LHC

Gives time for high field magnet development

Major physics potential at FCC-ee

- Study Higgs x10 better than HL-LHC
- EWPO x10-100 better than LEP
- ► HF studies complementary to LHC-b/Belle II
- Matches right time scale immediately after HL-LHC
 - Gives time for high field magnet development
- Major physics and exploration potential at FCC-hh
 - Shares tunnel and much of the FCCee infrastructure
 - ➢ HHH to 5% precision
 - Huge jump in direct discovery potential

Major physics potential at FCC-ee

- Study Higgs x10 better than HL-LHC
- EWPO x10-100 better than LEP
- ➢ HF studies complementary to LHC-b/Belle II
- Matches right time scale immediately after HL-LHC
 - Gives time for high field magnet development
- Major physics and exploration potential at FCC-hh
 - Shares tunnel and much of the FCCee infrastructure
 - ► HHH to 5% precision
 - Huge jump in direct discovery potential

Great vision and plan for the next 70 years of HEP