Simone Valdré INFN – Sezione di Firenze

Identificazione di particelle cariche tramite tempo di volo in FAZIA

Sesto Fiorentino, 10 gennaio 2020

FAZIA Upgrade for Radioactive Beam Operation (Grant INFN per neoassunti)

FAZIA Upgrade for Radioactive Beam Operation (Grant INFN per neoassunti)

Riduzione delle soglie di identificazione

- Fondamentale per misurare con fasci ISOL (SPES, Spiral2,...)
- Studio della fisica del quasi-target
- Investigate alcune possibili soluzioni:
 - implementazione del tempo di volo (questo lavoro)
 - uso di rivelatori al silicio sottili come primo stadio
 - uso di rivelatori alternativi

Massa delle particelle dal ToF e dall'energia

Necessaria una marca di tempo di start!

Sincronizzazione

Risultati 000000

Identificazione tramite ToF

ToF	ID
000	0

Il telescopio FAZIA

Gli stadi del telescopio

- rivelatore al Si da 300 µm (reverse-mounted);
- rivelatore al Si da 500 µm (reverse-mounted);
- S cristallo CsI(TI) da 10 cm letto da fotodiodo.

Per ottenere le migliori risoluzione energetica e indentificazione in Z e A i rivelatori al Si sono prodotti da un lingotto nTD tagliato ad un angolo "random" per evitare effetti di channeling.

ToF	ID
000	0

Il telescopio FAZIA

Gli stadi del telescopio

- rivelatore al Si da 300 µm (reverse-mounted);
- rivelatore al Si da 500 µm (reverse-mounted);
- S cristallo CsI(TI) da 10 cm letto da fotodiodo.

Per ottenere le migliori risoluzione energetica e indentificazione in Z e A i rivelatori al Si sono prodotti da un lingotto nTD tagliato ad un angolo "random" per evitare effetti di channeling.

ToF	ID
000	0

Il telescopio FAZIA

Gli stadi del telescopio

- rivelatore al Si da 300 µm (reverse-mounted);
- rivelatore al Si da 500 µm (reverse-mounted);
- S cristallo CsI(TI) da 10 cm letto da fotodiodo.

Per ottenere le migliori risoluzione energetica e indentificazione in Z e A i rivelatori al Si sono prodotti da un lingotto nTD tagliato ad un angolo "random" per evitare effetti di channeling.

FAZIA

Sincronizzazione

Risultati 000000

II blocco FAZIA

16 telescopi, con le schede di **front-end**, formano un **blocco** che opera in **vuoto**.

ToF ID	FAZIA	Sincronizzazione	Risultati
0000	00000	0000000000	000000
Elettronica d	li front-end		

- Catena analogica: preamplificatori di carica e filtri anti-aliasing
- I segnali sono subito digitalizzati con ADC a 14-bit:
 - elaborazione on-line su FPGA
 - risoluzione energetica migliore dell'1 % da 5 MeV a 4 GeV

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019

Elettronica	di front and		
0000	00000	0000000000	000000
ToF ID	FAZIA	Sincronizzazione	Risultati

- Catena analogica: preamplificatori di carica e filtri anti-aliasing
- I segnali sono subito digitalizzati con ADC a 14-bit:
 - elaborazione on-line su FPGA
 - risoluzione energetica migliore dell'1 % da 5 MeV a 4 GeV

• distribuzione comune del clock per campionamento sincrono

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019

ToF ID	FAZIA	Sincronizzazione	Risultati
0000	00000	0000000000	000000

Elettronica di front-end

Elettronica	di front-end		
0000	00000	0000000000	000000
ToF ID	FAZIA	Sincronizzazione	Risultati

- Catena analogica: preamplificatori di carica e filtri anti-aliasing
- I segnali sono subito digitalizzati con ADC a 14-bit:
 - elaborazione on-line su FPGA
 - risoluzione energetica migliore dell'1 % da 5 MeV a 4 GeV

• distribuzione comune del clock per campionamento sincrono

₩

- Compattezza e modularità
- Ottima discriminazione isotopica
- Soglie (2-10 MeV/u) adatte alle energie di Fermi

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019

ToF ID	FAZIA	Sincronizzazione	Risultati
0000	000000	0000000000	000000

Metodi di identificazione

Correlazione $\Delta E - E$

- sfrutta il meccanismo di perdite di Bethe-Bloch
- soglia di energia legata allo spessore del primo stadio

Pulse Shape Discrimination^a

- la raccolta della carica dipende dal nucleo incidente
- $\bullet\,$ soglia di identificazione di 100–200 μm di penetrazione

^a N. Le Neindre et al, Nucl. Instr. and Meth. A 701 (145), 2013

ToF ID	FAZIA	Sincronizzazione	Risultati
0000	000000	000000000	000000

Metodi di identificazione

Correlazione $\Delta E - E$

- sfrutta il meccanismo di perdite di Bethe-Bloch
- soglia di energia legata allo spessore del primo stadio

Pulse Shape Discrimination^a

- la raccolta della carica dipende dal nucleo incidente
- $\bullet\,$ soglia di identificazione di 100–200 μm di penetrazione

Correlazione E - ToF

- implementazione in FAZIA descritta qui
- soglie di identificazione minime

^a N. Le Neindre et al, Nucl. Instr. and Meth. A 701 (145), 2013

ToF	ID
000	0

FAZIA

Sincronizzazione

Tempo di volo con FAZIA

Non il primo apparato per ioni pesanti ad implementare il ToF^a

^a F. Amorini et al, IEEE T. Nucl. Sci. 55 (717), 2008

Sincronizzazione

Tempo di volo con FAZIA

Non il primo apparato per ioni pesanti ad implementare il ToF^a

Le nostre sfide:

- rivelatori di grande area $(2 \times 2 \text{ cm}^2)$ e reverse-mounted;
- segnali rallentati dal filtro anti-aliasing;
- marche di tempo estratte da segnali campionati a 250 MS/s;
- non utilizzo del segnale di radio-frequenza dell'acceleratore;
- base di volo **corta** (1 m).

^a F. Amorini et al, IEEE T. Nucl. Sci. 55 (717), 2008

ToF ID	FAZIA	Sincronizzazione	Risultati
Estrazione della	marca di tempo		

Dopo alcuni test si è deciso di adottare un algoritmo **ARC-CFD**^a

digitale con $t_{\rm D}=$ 20 ns e f= 20 %

^a Anche se il CFD è compensato, rimane una dipendenza residua dalla forma del segnale, per cui discriminiamo gli ioni sia in **massa**, sia in **carica**

T₀F ID	FAZIA	Sincronizzazione	Risultati
0000	○○○○○●	0000000000	000000
Estrazione de	lla marca di ter	npo	

Dopo alcuni test si è deciso di adottare un algoritmo ${\bf ARC-CFD^a}$ digitale con $t_{\rm D}=20\,{\rm ns}$ e $f=20\,\%$

La marca di tempo in FAZIA è estratta dal segnale acquisito:

- segnale ad alto guadagno del primo stadio (range di ~ 300 MeV, 14-bit @ 250 MS/s);
- tutti i segnali sono riferiti al medesimo tempo di validazione, un offset che varia evento per evento:

$$t^{(\text{ev,det})} = t^{(\text{ev,det})}_{\text{CFD}} - t^{(\text{ev})}_{\text{val}}$$

^a Anche se il CFD è compensato, rimane una dipendenza residua dalla forma del segnale, per cui discriminiamo gli ioni sia in massa, sia in carica

• Primo esperimento FAZIA physics oriented

- Primo esperimento FAZIA physics oriented
- \bullet Interamente calibrato con ID in massa fino a $Z\sim 24$

- Primo esperimento FAZIA physics oriented
- \bullet Interamente calibrato con ID in massa fino a $Z\sim24$
- Molti eventi con almeno una particella completamente caratterizzata che permette di recuperare t_0

FAZIA

Sincronizzazione

Risultati 000000

Esperimento ISOFAZIA a LNS

Dalla tesi magistrale di A. Buccola, Università di Firenze

ToF ID

FAZIA

Sincronizzazione

Risultati 000000

Esperimento ISOFAZIA a LNS

Dalla tesi magistrale di A. Buccola, Università di Firenze

Dalla tesi magistrale di A. Buccola, Università di Firenze

Sincronizzazione

Esperimento ISOFAZIA a LNS

p,d,t fermati nel primo stadio di Si

- $\bullet~{\rm PSD}$ non risolve gli isotopi per Z<3
- E ToF permette di recuperare la massa per Z = 1 fino a 2 MeV

ToF ID 0000 Sincronizzazione

Esperimento ISOFAZIA a LNS

p,d,t fermati nel primo stadio di Si

- \bullet PSD non risolve gli isotopi per Z<3
- E ToF permette di recuperare la massa per Z = 1 fino a 2 MeV

Limitazioni di E - ToF

- la risoluzione temporale non permette di discriminare gli isotopi per ${\cal Z}>1$
- solo un sottoinsieme di telescopi può essere usato
 - controllo con α della stessa energia (le differenze di tempo dovrebbero essere 0)

courtesy of A. Buccola, Università di Firenze

Effetti macroscopici (\sim 4 ns)

Struttura a tre picchi

Effetti secondari (< 4 ns)

Ritardi di canale residui

ToF	ID
000	0

Sincronizzazione

Ritardi nella linea di clock

Studio del fenomeno

- La struttura a tre picchi è associata a diversi ritardi nelle linee di clock di campionamento
- Per il telescopio "A" c'è un fan-in / fan-out in più che introduce un ritardo aggiuntivo!
| ToF | ID |
|-----|----|
| 000 | 0 |

Risultati 000000

Т	ol	F	I	D
0	0	0	¢	5

FAZIA

Sincronizzazione

Risultati 000000

ToF	ID
000	0

FAZIA

Sincronizzazione

Risultati 000000

ToF	I	D
000	C)

Ritardi nella linea di clock

Studio del fenomeno

- La struttura a tre picchi è associata a diversi ritardi nelle linee di clock di campionamento
- Per il telescopio "A" c'è un fan-in / fan-out in più che introduce un ritardo aggiuntivo!

Soluzione (dal 2018)

• all'accensione riprogrammiamo i circuiti PLL per introdurre un ritardo di 1.5 ns sui clock a 250 MHz

ToF ID	FAZIA	Sincronizzazione	Risul
0000	000000	000000000	000

ToF	I	D
000	C)

Ritardi nella linea di clock

Studio del fenomeno

- La struttura a tre picchi è associata a diversi ritardi nelle linee di clock di campionamento
- Per il telescopio "A" c'è un fan-in / fan-out in più che introduce un ritardo aggiuntivo!

Soluzione (dal 2018)

- all'accensione riprogrammiamo i circuiti PLL per introdurre un ritardo di 1.5 ns sui clock a 250 MHz
- uscita dalla regione critica di sovrapposizione tra validazione e fronte di campionamento

ToF	I	D
000	C)

Ritardi nella linea di clock

Studio del fenomeno

- La struttura a tre picchi è associata a diversi ritardi nelle linee di clock di campionamento
- Per il telescopio "A" c'è un fan-in / fan-out in più che introduce un ritardo aggiuntivo!

Soluzione (dal 2018)

- all'accensione riprogrammiamo i circuiti PLL per introdurre un ritardo di 1.5 ns sui clock a 250 MHz
- uscita dalla regione critica di sovrapposizione tra validazione e fronte di campionamento

Residui ritardi di campionamento possono rimanere

ToF ID	FAZIA	Sincronizzazione	Risultati
0000	000000	0000000000	000000

Test di timing a Firenze

FAZIA

Sincronizzazione

Risultati 000000

Test di timing a Firenze

FAZIA

Sincronizzazione

Risultati 000000

Test di timing a Firenze

17/2

17/27

Risultati 000000

Esperimento FAZIAPRE a LNS

40,48 Ca + 12 C @ 25, 40 AMeV (6 blocchi FAZIA)

Test di timing

Il test di Firenze è stato ripetuto durante il montaggio di FAZIAPRE a LNS, dando un ritardo misurato di (203 ± 13) ps (contro un ritardo nominale di 207 ps)

Risultati 000000

Esperimento FAZIAPRE a LNS

$^{40,48}\text{Ca}+\,^{12}\text{C}$ @ 25,40 AMeV (6 blocchi FAZIA)

Test di timing

Il test di Firenze è stato ripetuto durante il montaggio di FAZIAPRE a LNS, dando un ritardo misurato di (203 ± 13) ps (contro un ritardo nominale di 207 ps)

Permanent infrared LED

Durante FAZIAPRE, il LED infrarosso è rimasto montato nella camera di scattering ed è stato mantenuto acceso durante tutto il turno (ad un rate di 0.1 Hz) per tracciare i ritardi dei vari canali

FAZIA 000000

Sincronizzazione

Risultati 000000

Esperimento FAZIAPRE a LNS

Risultati dell'analisi degli eventi LED:

FAZIA 000000

Sincronizzazione

Risultati 000000

Esperimento FAZIAPRE a LNS

Risultati dell'analisi degli eventi LED:

 ci sono ritardi costanti (< 4 ns) tra canali (INDIPENDENTI DALL'EVENTO):

$$t^{(\mathrm{ev,det})} = t_{\mathrm{CFD}}^{(\mathrm{ev,det})} - t_{\mathrm{val}}^{(\mathrm{ev})} + \delta t^{(\mathrm{det})}$$

FAZIA 000000

Sincronizzazione

Risultati 000000

Esperimento FAZIAPRE a LNS

Risultati dell'analisi degli eventi LED:

 ci sono ritardi costanti (< 4 ns) tra canali (INDIPENDENTI DALL'EVENTO):

$$t^{(\mathrm{ev,det})} = t_{\mathrm{CFD}}^{(\mathrm{ev,det})} - t_{\mathrm{val}}^{(\mathrm{ev})} + \delta t^{(\mathrm{det})}$$

• i ritardi sono **stabili** (entro 200 ps) anche dopo un completo riavvio dell'elettronica

FAZIA 000000

Sincronizzazione

Risultati 000000

Esperimento FAZIAPRE a LNS

Risultati dell'analisi degli eventi LED:

 ci sono ritardi costanti (< 4 ns) tra canali (INDIPENDENTI DALL'EVENTO):

$$t^{(\text{ev,det})} = t_{\text{CFD}}^{(\text{ev,det})} - t_{\text{val}}^{(\text{ev})} + \delta t^{(\text{det})}$$

- i ritardi sono **stabili** (entro 200 ps) anche dopo un completo riavvio dell'elettronica
- produzione di una **mappa dei ritardi** per correggere le marche di tempo:

$$t_{\mathrm{adj}}^{(\mathrm{ev,det})} = t_{\mathrm{CFD}}^{(\mathrm{ev,det})} + \Delta^{(\mathrm{det})}$$

FAZIA 000000

Sincronizzazione

Risultati 000000

Esperimento FAZIAPRE a LNS

Risultati dell'analisi degli eventi LED:

 ci sono ritardi costanti (< 4 ns) tra canali (INDIPENDENTI DALL'EVENTO):

$$t^{(\mathrm{ev,det})} = t_{\mathrm{CFD}}^{(\mathrm{ev,det})} - t_{\mathrm{val}}^{(\mathrm{ev})} + \delta t^{(\mathrm{det})}$$

- i ritardi sono **stabili** (entro 200 ps) anche dopo un completo riavvio dell'elettronica
- produzione di una **mappa dei ritardi** per correggere le marche di tempo:

$$t_{\rm adj}^{\rm (ev,det)} = t_{\rm CFD}^{\rm (ev,det)} + \Delta^{\rm (det)}$$

Ho studiato un metodo di sincronizzazione alternativo che può essere usato **senza impulsi LED**

Risultati 000000

Auto-sincronizzazione

Auto-sincronizzazione

20/27

FAZIA 000000

Sincronizzazione

Risultati 000000

Auto-sincronizzazione (o LED)

Ora abbiamo una mappa dei ritardi $\Delta^{(\mathrm{i})} \equiv \delta t^{(\mathrm{i})} - \delta t^{(\mathrm{ref})}$

FAZIA

ToF ID

Ora abbiamo una **mappa dei ritardi**
$$\Delta^{(i)} \equiv \delta t^{(i)} - \delta t^{(ref)}$$

$$t^{(\rm ev,1)} = t^{(\rm ev,1)}_{\rm CFD} - t^{(\rm ev)}_{\rm val} + \delta t^{(1)}$$

$$t^{(\text{ev},2)} = t^{(\text{ev},2)}_{\text{CFD}} - t^{(\text{ev})}_{\text{val}} + \delta t^{(2)}$$

Sincronizzazione

0000000000

Risultati

ToF ID

Ora abbiamo una mappa dei ritardi $\Delta^{(i)} \equiv \delta t^{(i)} - \delta t^{(\mathrm{ref})}$

Sincronizzazione

ToF ID

Ora abbiamo una mappa dei ritardi $\Delta^{(\mathrm{i})} \equiv \delta t^{(\mathrm{i})} - \delta t^{(\mathrm{ref})}$

Sincronizzazione

ToF ID

Ora abbiamo una mappa dei ritardi $\Delta^{(\mathrm{i})} \equiv \delta t^{(\mathrm{i})} - \delta t^{(\mathrm{ref})}$

Sincronizzazione

$$\begin{array}{c} t^{(\mathrm{ev},1)} = t^{(\mathrm{ev},1)}_{\mathrm{CFD}} - t^{(\mathrm{ev})}_{\mathrm{val}} + \delta t^{(1)} \\ \downarrow \\ t^{(\mathrm{ev},2)} - t^{(\mathrm{ev},1)} = t^{(\mathrm{ev},2)}_{\mathrm{CFD}} + \delta t^{(2)} - t^{(\mathrm{ev},1)}_{\mathrm{CFD}} - \delta t^{(1)} \\ \downarrow \\ t^{(\mathrm{ev},2)} - t^{(\mathrm{ev},1)} = t^{(\mathrm{ev},2)}_{\mathrm{CFD}} + \Delta^{(2)} - t^{(\mathrm{ev},1)}_{\mathrm{CFD}} - \Delta^{(1)} \\ \downarrow \\ t^{(\mathrm{ev},2)} - t^{(\mathrm{ev},1)} = t^{(\mathrm{ev},2)}_{\mathrm{CFD}} + \Delta^{(2)} - t^{(\mathrm{ev},1)}_{\mathrm{CFD}} - \Delta^{(1)} \\ \downarrow \\ t^{(\mathrm{ev},2)} - t^{(\mathrm{ev},1)} = t^{(\mathrm{ev},2)}_{\mathrm{adj}} - t^{(\mathrm{ev},1)}_{\mathrm{adj}} \end{array}$$

21/27

Risultati 000000

Correzione dei ritardi (LED o auto-sync)

FAZIA

Sincronizzazione

Risultati

Correlazione E - ToF finale

Miglioramento della discriminazione isotopica

D			
ToF ID	FAZIA	Sincronizzazione	Risultati

- Possibilità di fare timing con FAZIA:
 - jitter inferiore al ns (dipende dalla particella);
 - con 1 m di base di volo si discrimina A fino a $Z \sim 10$, le soglie vengono ridotte (rispetto alla PSD) per Z = 3 8 e si recuperano completamente Z = 1, 2 a tutte le energie.
| FAZIA | Sincronizzazione | Risultati | | | | |
|-------------------------|------------------|------------------------|--|--|--|--|
| 000000 | 000000000 | 00000 | | | | |
| Riepilogo e conclusioni | | | | | | |
| | FAZIA | FAZIA Sincronizzazione | | | | |

- Possibilità di fare timing con FAZIA:
 - jitter inferiore al ns (dipende dalla particella);
 - con 1 m di base di volo si discrimina A fino a $Z \sim 10$, le soglie vengono ridotte (rispetto alla PSD) per Z = 3 8 e si recuperano completamente Z = 1, 2 a tutte le energie.
 - La distribuzione comune del clock non è sufficiente:
 - regolazione fine dei ritardi interni ai PLL;
 - ulteriori correzioni dei ritardi residui (< 4 ns).

ToF ID	FAZIA	Sincronizzazione	Risultati		
0000	000000	0000000000	000000		
Diantiana a conclusioni					
Riepilogo	e conclusioni				

- Possibilità di fare timing con FAZIA:
 - jitter inferiore al ns (dipende dalla particella);
 - con 1 m di base di volo si discrimina A fino a $Z \sim 10$, le soglie vengono ridotte (rispetto alla PSD) per Z = 3 8 e si recuperano completamente Z = 1, 2 a tutte le energie.
 - La distribuzione comune del clock non è sufficiente:
 - regolazione fine dei ritardi interni ai PLL;
 - ulteriori correzioni dei ritardi residui (< 4 ns).
 - Impulsi LED o "auto-sync" per correggere i ritardi:
 - metodi estremamente accurati (errori sulla correzione $\sim 10 \text{ ps}$);
 - tracciamento di variazioni dei ritardi (< 200 ps).

ToF ID	FAZIA	Sincronizzazione	Risultati
0000	000000	0000000000	000000
D: 11	1		
Riepilogo e	e conclusioni		

- Possibilità di fare timing con FAZIA:
 - jitter inferiore al ns (dipende dalla particella);
 - con 1 m di base di volo si discrimina A fino a $Z \sim 10$, le soglie vengono ridotte (rispetto alla PSD) per Z = 3 8 e si recuperano completamente Z = 1, 2 a tutte le energie.
 - La distribuzione comune del clock non è sufficiente:
 - regolazione fine dei ritardi interni ai PLL;
 - ulteriori correzioni dei ritardi residui (< 4 ns).
 - Impulsi LED o "auto-sync" per correggere i ritardi:
 - metodi estremamente accurati (errori sulla correzione $\sim 10 \text{ ps}$);
 - tracciamento di variazioni dei ritardi (< 200 ps).
 - Applicazioni:
 - studio della fisica del QT (con FAZIA);
 - metodi di correzione trasversali ed applicabili ad altri apparati anche in altri settori!

FAZIA

Sincronizzazione

Risultati

Collaborazione FAZIA

