LHC: Detectors and Upgrades

XXXII INTERNATIONAL SEMINAR of NUCLEAR and SUBNUCLEAR PHYSICS "Francesco Romano" 7 June 2021

Attilio Andreazza

Università di Milano e INFN Sezione di Milano)

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

LHC AND HL-LHC

The CERN Large Hadron Collider

p-p^(*), p-A and A-A collider

^(*) Main topics of these lectures

- − 2009-2012: Run1 \sqrt{s} = 7-8 TeV
- − 2015-2019: Run2 \sqrt{s} = 13 TeV
- Seven experiments: ALICE, ATLAS, CMS^(*), LHCb, LHCf, TOTEM and MoEDAL
- 40 MHz (25 ns) collision rate

		The second se
Quantity	Number Ger	neva 📕
Circumference	nev 26 659 m	ATLAS ALLOS
Dipole operating temperature	1.9 K (-271.3°C)	ALICE
Number of magnets	9593 CMS	
Number of main dipoles	1232	
Number of main quadrupoles	392	
Number of RF cavities	8 per beam	
Nominal energy, protons	6.5 TeV	
Nominal energy, ions	2.56 TeV/u	
	(energy per nucleon)	
Nominal energy, protons collisions	13 TeV	
No. of bunches per proton beam	2808 2556 achieved	
No. of protons per bunch (at start)	1.2 x 10 ¹¹	
Number of turns per second	11245 88.9 μs	
Number of collisions per second	1 billion	

Luminosity

Luminosity \mathcal{L}

$$\frac{dN}{dt} = \sigma \mathcal{L}$$

rate of interactions

$$\mathcal{L} = \frac{n_b f_{rev} N^2}{4\pi \sigma_x \sigma_y}$$

- n_b number of bunches
- f_{rev} revolution frequency
- N particles per bunch
- $\sigma_{x,y}$ beam size at interaction point

Integrated luminosity

$$N = \sigma \int \mathcal{L} dt$$

- total number of produced events
- determines the physics reach of the experiment

At the end of Run2 ~150 pb⁻¹/experiment

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

Standard Model Physics Output

Beyond the Standard Model

ATLAS Preliminary

ATLAS SUSY Searches* - 95% CL Lower Limits

IV	larch 2021									$\sqrt{s} = 13$ lev
	Model	S	ignatur	~e ∫.	Ldt [fb	⁻¹] Mass limit				Reference
Si	$\tilde{q}\tilde{q},\tilde{q}{ ightarrow}q\tilde{\chi}_1^0$	0 e,µ mono-jet	2-6 jets 1-3 jets	$\begin{array}{c} E_T^{\rm miss} \\ E_T^{\rm miss} \end{array}$	139 36.1	$ \vec{q} $ [1x, 8x Degen.]		1.85	m($ ilde{\chi}_1^0$)<400 GeV m($ ilde{q}$)-m($ ilde{\chi}_1^0$)=5 GeV	2010.14293 2102.10874 LHC dipoles
Inclusive Searche	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	139	β β Forbidden		2.3 1.15-1.95	$m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=1000 \text{ GeV}$	2010.14293 2010.14293
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_{1}^{0}$	1 e,µ	2-6 jets		139	ĝ		2.2	$m(\tilde{\chi}_1^0)$ <600 GeV	2101.01629
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}(\ell\ell)\tilde{\chi}_1^0$	<i>ее, µµ</i> О.г. и	2 jets	E_T^{miss}	36.1	70 2	1.2	1.07	$m(\tilde{g})-m(\tilde{\chi}_1^0)=50 \text{ GeV}$	
	$gg, g \rightarrow qqWZX_1$	SS <i>e</i> ,μ	6 jets	L_T	139	g Ĩg	1.15	1.97	$m(\chi_1) < 600 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_1^0) = 200 \text{ GeV}$	
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_1^0$	0-1 <i>e</i> ,μ	3 b	$E_T^{\rm miss}$	79.8	ğ		2.25	$m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}$	
	100 10 10 10 10	55 e,µ	6 jets		139	g	1.25		m(ĝ)-m(X ₁)=300 GeV	> 💦 Z 🚺 S > ∰ L
S) U	$\tilde{b}_1 \tilde{b}_1$	0 <i>e</i> , <i>µ</i>	2 <i>b</i>	$E_T^{\rm miss}$	139	$\tilde{b}_1 \\ \bar{b}_1 \\ 0.68$	1.255		m(<i>k</i> ⁰ ₁)<400 GeV 10 GeV<∆m(<i>b</i> ₁ <i>k</i> ⁰ ₁)<20 GeV	
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 {\rightarrow} b \tilde{\chi}_2^0 {\rightarrow} b h \tilde{\chi}_1^0$	0 e,μ 2 τ	6 b	$E_T^{\rm miss}$ $E_T^{\rm miss}$	139	δ ₁ Forbidden δ. 0.13-0.85	0.23-1.35	Δm(/	$\tilde{x}_{2}^{0}, \tilde{x}_{1}^{0}$)=130 GeV, m (\tilde{x}_{1}^{0}) =100 GeV m $(\tilde{x}_{2}^{0}, \tilde{x}_{2}^{0})$ =130 GeV, m (\tilde{x}_{1}^{0}) =0 GeV	
quar	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 e,μ	≥ 1 jet	E_T^{miss}	139	71 71	1.25		$m(\tilde{\chi}_1^0)=1 \text{ GeV}$	
1. SC	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow Wb\tilde{\chi}_1^0$	1 e,µ	3 jets/1 b	$E_T^{\rm miss}$	139	ř ₁ Forbidden 0.65			$m(\tilde{\chi}_1^0)$ =500 GeV	
3 rd ger direct p	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$	1-2 τ	2 jets/1 b	E_T^{miss}	139	ī, Forbidden	1.4		m(r̃ ₁)=800 GeV	
	$t_1 t_1, t_1 \rightarrow c t_1 / c c, c \rightarrow c t_1$	0 e,µ 0 e,µ	mono-jet	E_T^{T}	139	<i>i</i> 0.55			$m(\tilde{t}_1,\tilde{c})=0 \text{ GeV}$ $m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$	
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$	1-2 <i>e</i> ,μ	1-4 b	$E_T^{\rm miss}$	139	ĩ ₁ 0.067-	-1.18		m($\tilde{\chi}_{2}^{0}$)=500 GeV	
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e,µ	1 <i>b</i>	E_T^{miss}	139	r ₂ Forbidden 0.86	_	$m(\hat{X}_1^0)$)=360 GeV, m(\tilde{t}_1)-m($\tilde{\chi}_1^0$)= 40 GeV	> cosmic microwave radiation visible ? I> / ?/
	$\tilde{\chi}_1^* \tilde{\chi}_2^0$ via WZ	3 e,μ ee,μμ	≥ 1 jet	$E_T^{\rm miss}$ $E_T^{\rm miss}$	139 139				$m(\tilde{\chi}_{1}^{\pm})=0$ $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=5 \text{ GeV}$	
	$\hat{\chi}_{1}^{\pm} \hat{\chi}_{1}^{\mp}$ via WW	2 e,µ		$E_T^{\rm miss}$	139	<i>x</i> [±] 0.42			$m(\tilde{\chi}_1^0)=0$	
ot ~	$\tilde{\chi}_1^* \tilde{\chi}_2^0$ via Wh	0-1 e, µ	2 b/2 γ	E_T^{miss} E^{miss}	139	$\tilde{\chi}_1^x/\tilde{\chi}_2^v$ Forbidden 0.74			$m(\tilde{\chi}_1^0) = 70 \text{ GeV}$ $m(\tilde{\chi}_1^0) = 0 \text{ F}(m(\tilde{\chi}_1^0) + m(\tilde{\chi}_1^0))$	
EW	$\tilde{\tau}_1 \chi_1 \text{ via } \tilde{\iota}_L / v$ $\tilde{\tau} \tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$	2 τ, μ		E_T^{miss}	139	λ1 1.0 τ̃ [τ̃L, τ̃R,L] 0.16-0.3 0.12-0.39			$m(\ell, \nu)=0.5(m(\ell_1)+m(\ell_1))$ $m(\tilde{\chi}_1^0)=0$	20 B
0	$\tilde{\ell}_{\mathrm{L,R}} \tilde{\ell}_{\mathrm{L,R}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	2 e,μ ee,μμ	0 jets ≥ 1 jet	E_T^{miss} E_T^{miss}	139 139	ζ 0.256 0.7			$m(\tilde{\chi}_1^0)=0$ $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$	
	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	0 e,µ	$\geq 3 b$	E ^{miss}	36.1	<u>Й</u> 0.13-0.23 0.29-0.88			$BR(\tilde{\chi}_1^0 \to h\tilde{G}) = 1$	
	D:	Piecen tek	d jets	L _T	139	H 0.55			$BH(x_1 \rightarrow ZG) = 1$	
ed	Direct $\chi_1 \chi_1$ prod., long-lived χ_1	Disapp. trk	i jet	E_T	139				Pure wino Pure higgsino	
g-liv ticle	Stable g R-hadron		Multiple		36.1	ğ		2.0	2.40	
par	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^{\circ}$	Displ. lep	Multiple	Emiss	36.1	$\hat{g} = [r(\hat{g}) = 10 \text{ ns}, 0.2 \text{ ns}]$ $\hat{e}, \hat{u} = 0.7$		2.05 2.4	$m(\tilde{\ell}_1)=100 \text{ GeV}$ $\tau(\tilde{\ell})=0.1 \text{ ns}$	
1		and become to		-1		τ [*] 0.34			$\tau(\tilde{\ell}) = 0.1 \text{ ns}$	possible dark matter relicits
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 e,µ			139	$\tilde{X}_{1}^{\mp}/\tilde{X}_{1}^{0}$ [BR($Z\tau$)=1, BR(Ze)=1] 0.625 1.0	5		Pure Wino	
	$\tilde{\chi}_1^* \tilde{\chi}_1^+ / \tilde{\chi}_2^0 \to WW/Z\ell\ell\ell\ell\nu\nu$	4 e,µ	0 jets	$E_T^{\rm miss}$	139	$\frac{\tilde{X}_{1}^{*}/\tilde{X}_{2}^{*}}{[m(\tilde{Y}_{1}^{0})-200 \text{ GeV}]} = 0.95$	1.	.55	$m(\tilde{x}_1')=200 \text{ GeV}$	
~	$gg, g \to qq \lambda_1, \lambda_1 \to qq q$ $\tilde{t}\tilde{t}, \tilde{t} \to t \tilde{\chi}_1^0, \tilde{\chi}_1^0 \to tbs$		Multiple	010	36.1	$ \vec{t} \begin{bmatrix} 1 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\$	1.5	1.5	$m(\tilde{\chi}_1^0)$ =200 GeV, bino-like	
RPV	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \rightarrow bbs$		$\geq 4b$		139	ĩ Forbidden 0.95			$m(\tilde{\chi}_1^{\pm})$ =500 GeV	INC interaction
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow af$	2011	2 jets + 2 /	5	36.7	<i>t</i> ₁ [<i>qq, bs</i>] 0.42 0.61	0.4-1.4	5	$BB(\tilde{t} \rightarrow he/hu) > 20\%$	
	dati d	1μ	DV		136	\tilde{I}_1 [1e-10< λ'_{23k} <1e-8, 3e-10< λ'_{23k} <3e-9] 1.0	0.41.45	1.6	BR $(\tilde{t}_1 \rightarrow q\mu)$ =100%, cos θ_l =1	noint 🕴 🕇 🔽 🖉 🖉 🖉 🖉 🖉 🖉 🖉
	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0/\tilde{\chi}_1^0, \tilde{\chi}_{1,2}^0 \rightarrow tbs, \tilde{\chi}_1^+ \rightarrow bbs$	1-2 <i>e</i> , <i>µ</i>	≥6 jets		139	<i>x</i> ⁰ ₁ 0.2-0.32			Pure higgsino	
² Only a selection of the available mass limits on new states or 10^{-1} 1 Mass scale [TeV]										
phéi	nomena is shown. Many of the li	imits are ba	sed on made							
Simp	interaction of the de	comptions								

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

High-Luminosity LHC

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

Coordinate system

HL-LHC properties and operation

 $\frac{1}{2}$

R(β*)

Parameter	Nominal LHC	HL-LHC
	(design report)	(standard)
Number of bunches	2808	2760
Beam current (A)	0.58	1.1
Minimum β^* (m)	0.55	0.15
Peak luminosity with crab cavities $L_{\text{peak}} \times R_1/R_0$ (10 ³⁴ cm ⁻² s ⁻¹)	(1.18)	17
Levelled luminosity for $\mu = 140 (10^{34} \text{ cm}^{-2} \text{ s}^{-1})$	-	5.0
Events/crossing μ (with levelling and crab cavities)	27	131
Maximum line density of pile-up events during fill (events/mm)	0.21	1.28

$$\mathcal{L} = \frac{n_b f_{rev} N^2}{4\pi \sigma_x \sigma_y} \Leftrightarrow \frac{n_b f_{rev} N^2}{4\pi \varepsilon_n \beta^* / \gamma} R, \qquad R = \left(1 + \frac{\theta_c \sigma_z}{\sigma_{x,y}}\right)$$

- γ relativistic factor
- ε_n normalized emittance
- β^* beta function at the collision point
- θ_c crossing angle
- σ_z longitudinal bunch length

Luminosity: pile-up

CMS Average Pileup (pp, \sqrt{s} =13 TeV)

- Total pp cross section: 80 mb
 - For $1 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$, 10^9 events/s
 - With 25 ns collision rate: 25 events/collision

Luminosity: pile-up

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

8

Luminosity: radiation effect

- Radiation effects from the high interaction rate:
 - high particle flux:

UNIVERSITÀ DEGLI STUDI DI MILANO

- requirements on detector granularity
- background rates and space charge effects
- permanent damage on detector and electronics
- detector activation

Mitigation in Electronics System, in CERN-2015-003

- In the following I'll try to review:
 - general detector concepts in high-energy particle physics
 - which technologies have been chosen for the ATLAS and CMS detectors to cope with the LHC harsh environment
 - how they have been evolved to match the 10 more challenging environment at the LHC
- Layout
 - ATLAS and CMS detector concepts
 - The detectors inside-out:
 - Inner tracking
 - Calorimetry
 - Muon systems
 - DAQ and trigger (if time allows)
- Most material is from the experiment Phase II upgrade TDRs
 - sometimes not up-to-date, but it present the projects in an organic way
 - but I'll try to throw in some basic principles for non-experts

I am not an expert on everything, my apologies for any incomplete/erroneous information reported

ATLAS AND CMS DETECTOR CONCEPTS

The "All-purpose" HEP Detector

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

UNIVERSITÀ DEGLI STUDI DI MILANO

The "All-purpose" HEP Detector

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

The magnetic systems

ATLAS

A Toroidal LHC ApparatuS

- Large air-core **toroids** integrated with the muon system
- Thin solenoid around the central tracker
 - 2 T magnetic field
 - inside the calorimeters

CMS

Compact Muon Solenoid

- Powerful solenoid
 - 4 T magnetic field
 - outside of the calorimeter
- Muon system integrated in the solenoid **yoke**

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

The magnetic systems

ATLAS

A Toroidal LHC ApparatuS

- Large air-core **toroids** integrated with the muon system
- Thin solenoid around the central tracker
 - 2 T magnetic field
 - inside the calorimeters

CMS

Compact Muon Solenoid

- Powerful solenoid
 - 4 T magnetic field
 - **outside** of the calorimeter
- Muon system integrated in the solenoid **yoke**

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

Momentum measurement concepts

- A charged particle bending radius in magnetic field: $p[GeV/c] = 0.3 \ q \ B[T] \ R[m]$
- Deflection due to the Lorenz force on a length *L*:

$$\theta = \frac{L}{R} = \frac{0.3 \ qBL}{p}$$

 in case of non-uniform magnetic field, use the bending power

$$\int Bdl$$

- Deflection measurement
 - direction before and after the bending field

$$\frac{\sigma_p}{p} = \frac{\sigma_\theta}{\theta} = \frac{p\sigma_\theta}{0.3 \ qBL}$$

- Sagitta measurement
 - deviation from a "straight line" inside the magnetic field:

$$s = R(1 - \cos\theta) \approx \frac{L^2}{8R} = \frac{0.3 \ qBL^2}{8p} \qquad \qquad \frac{\sigma_p}{p} = \frac{\sigma_s}{s} = \frac{8p\sigma_s}{0.3 \ qBL^2}$$

Multiple scattering

Relevant for small

thickenesss

 Deflection of a charged particle trajectory due to soft interactions with the material

- on average
$$\langle \varepsilon_p \rangle = 0$$
, $\langle \theta_p \rangle = 0$

- but the standard deviation is finite:

$$\theta_{p,\text{rms}} = \frac{13.6 \text{ MeV}}{\beta c p} z \sqrt{\frac{X}{X_0}} \left(1 + 0.038 \ln \frac{X}{X_0}\right)$$

- βc particle velocity
- *p* particle momentum
- z particle charge (in units of e)
- X_0 is the radiation length of the material

$$X_0 \approx \frac{716.4 \,\mathrm{g}\,\mathrm{cm}^{-2}A}{Z(Z+1)\ln(287/\sqrt{Z})} \times \frac{1}{\rho}$$

- *A*, *Z* mass and atomic number of the element
- ρ density

Full covariance matrix is given by $\varepsilon_{p,\text{rms}} = \frac{1}{\sqrt{3}} \theta_{p,\text{rms}} X$ $\langle \varepsilon_p \theta_p \rangle = \frac{1}{2} \theta_{p,\text{rms}}^2 X$

Resolution term due to multiple scattering:

$$\frac{\sigma_p}{p} = \frac{\theta_{p,\text{rms}}}{\theta} \propto \frac{1/p}{1/p} \propto \text{const.}$$

ATLAS Muon Spectrometer

Thin-gap chambers (TGC)

CMS Muon System

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

ATLAS Inner Detector

• Pixel Detector

- 4 barrel layers, 3+3 disks, 10⁸ pixels
- barrel radii: 33, 50, 85, 122 mm
- pixel size 50×400 μm² (50×250 IBL)
- σ_{RΦ}=6-10 μm, σ_z~66 μm

• SemiConductor Tracker

- 4 barrel layers, 7+7 disks, 6×10⁶ strips
- barrel radii: 30, 37, 44, 51 cm
- strip pitch 80 μm (40 mrad stereo)
- σ_{RΦ=}16 μm, σ_z=580 μm

• Transition Radiation Tracker

- barrel 55<R<102 cm
- 36 layers, 4×10⁵ drift tubes
- 4 mm diameter
- σ_{RΦ=}170 μm
- Also contributes to electron identification

CMS Silicon Tracker

• Pixel Detector

- 3 barrel layers, 2+2 disks, 10⁷ pixels
- barrel radii: 44, 73, 102 mm
- upgraded to 4 barrel layers, 3+3 disks, 10⁸ pixels
- pixel size 100×150 μ m²
- σ_{RΦ}~10 μm, σ_z~10 μm
- Internal Silicon Strip Tracker (TIB, TID)
 - 4 barrel layers, 3+3 disks, 2×10⁶ strips
 - barrel radii: 20-55 cm
 - strip pitch 80-120 μm
 - σ_{RΦ}~23-35 μm
- External Silicon Strip Tracker (TOB, TEC)
 - 6 barrel layers, 9+9 disks, 7×10⁶ strips
 - barrel radii: max 116 cm
 - strip pitch 120-180 μm
 - σ_{RΦ}~35-53 μm

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

Technology choice

- The inner tracking system purpose is to:
 - measure particle momentum
 - identify and separate the pileup interactions
 - detect decay of particles with a flight length from 1 mm (*b*-, *c*-hadrons, τ) to several cm (*s*-hadrons, new physics)
- and has to cope with:
 - particle rate: 100 MHz/cm² at 1×10^{34} cm⁻²s⁻¹
 - doses up to 10^7 Gy and NIEL 10^{16} (1 MeV n_{eq} /cm⁻²)

opening angle ~0.1 rad transverse vertex resolution ~10 μm decay length resolution ~100 μm

eq. pixel detector view b strip detector view

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021 few µm resolution

25

several particles/cm²/bunch crossing

Technology choice

- The inner tracking system purpose is to:
 - measure particle momentum
 - identify and separate the pileup interactions
 - detect decay of particles with a flight length from 1 mm (*b*-, *c*-hadrons, τ) to several cm (*s*-hadrons, new physics)
- and has to cope with:
 - particle rate: 100 MHz/cm² at 1×10^{34} cm⁻²s⁻¹
 - doses up to 10^7 Gy and NIEL 10^{16} (1 MeV n_{eq} /cm⁻²)

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021 few µm resolution

several particles/cm²/bunch crossing

Impact parameter(s) resolution

- *d* transverse distance with of trajectory from the interaction region
 - ~0 for primary particles
 - $\sim c \tau$ for decay products (independent of boost)
- z_0 position along the beam axis
- Resolution is dominated by the first measurement points
 - rest of trajectory determine the curvature/momentum
- Detector resolution

$$\sigma_d = \sqrt{\frac{n^2 + 1}{(n-1)^2}} \sigma_y$$

- $n = x_2/x_1$ often referred as lever arm
- Multiple scattering

$$\sigma_d = \sqrt{\sum_i x_i^2 \theta_{p,\mathrm{rms},i}^2}$$

 where the index i runs over all material crossed by the particle up to and including the first measured point

Impact parameter(s) resolution

- *d* transverse distance with of trajectory from the interaction region
 - ~0 for primary particles
 - $\sim c \tau$ for decay products (independent of boost)
- z_0 position along the beam axis
- Resolution is dominated by the first measurement points
 - rest of trajectory determine the curvature/momentum
- Detector resolution

$$\sigma_d = \sqrt{\frac{n^2 + 1}{(n-1)^2}} \sigma_y \quad \propto \text{cost}$$

 d, z_0

- $n = x_2/x_1$ often referred as lever arm
- Multiple scattering

$$\sigma_d = \sqrt{\sum_i x_i^2 \theta_{p,\mathrm{rms},i}^2} \propto \frac{1}{p}$$

 where the index i runs over all material crossed by the particle up to and including the first measured point

 (X_1, Y_1)

 (x_2, y_2)

Example: ATLAS IBL insertion in LS1

- During Run1 (up to 2012), innermost barrel layer:
 - radius at 50 mm
 - pixel size 50×400 μm²
- In Run2, inserted a new layer
 - radius at 33 mm
 - pixel size 50×250 μm²

Back to history: most famous $t\overline{t}$

$$\begin{array}{ccc} p\bar{p} \rightarrow t\bar{t} + X \\ & \downarrow \bar{b}W^{-} \rightarrow \bar{b}q\bar{q} \\ & \downarrow bW^{+} \rightarrow be^{+}\nu_{e} \end{array}$$

- Lorentz boost increases decay length *L*
- it decreases opening angle of decay products to build the vertex, increasing σ_L
- The two effects compensate

$$\frac{\sigma_L}{L} = O\left(\frac{\sigma_d}{c\tau}\right)$$

τ average lifetime of decaying particle

Calorimetric systems

- Detection of neutral particles
 - interaction and conversion to charged particle
 - energy deposited by ionization
- Lepton identification
- Energy measurement (improving with increasing energy)
- Neutrino/Dark particle detection (missing energy/momentum)

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

High energy particles have different interactions with matter:

• electrons and photons degrade their energy by bremsstrahlung and pair production; the length scale is given by the *radiation length* X_0 :

$$X_o \approx \frac{716.4 \text{g cm}^{-2} A}{Z(Z+1) \ln(287 / \sqrt{Z})}$$

• hadrons undergo nuclear interactions, with mean free path given by the *interaction length* λ_l ;

$$\lambda_I \approx 35 \,\mathrm{g}\,\mathrm{cm}^{-2}A^{1/3}$$

• as to **muons**, and **low evergy charged particles**, usually the dominant energy loss process is by soft collisions following the Bethe-Bloch law:

$$\frac{dE}{dx} = \frac{N_A}{\varepsilon_0} z^2 e^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} - \beta^2 - \frac{\delta}{2} \right]$$

which is in the inteval 1-2 MeV/ $g \text{ cm}^{-2}$ for most materials.

Calorimetry basics: *Heitler* model

Despite electrons and hadrons having different behavior, it is possible to grasp the more relevant features through a simplified model:

- a particle fly a fixed lenght λ between two interactions;
- at each interaction m particles are produced, with typical transverse momentum p_T ;
- the secondary particles interact again, originating a particle shower, until they fall below a critical energy E_c ;
- after that they are absorbed in a typical length given by $E_c/(-dE/dx)$.

Starting with a primary particle of energy *E*:

• the total number **N** of secondary particles is

$$N = E / E_c$$

• this number is reached at a length $n\lambda$, where n is given by:

$$N = m^n \Longrightarrow n = \ln \frac{E}{E_c} / \ln m$$

resulting in shower length *L*: $L = \frac{\lambda}{\ln m} \ln \frac{E}{E_c} + \frac{E_c}{-dE/dx}$

Longitudinal dimension scales logarithmically on *E*

34

• between the i^{th} and the $(i \neq 1)^{\text{th}}$ interactions, the secondaries expand by $R_i = \lambda \frac{p_T}{E_i} = \frac{\lambda p_T}{E} m^i$ resulting in a transverse shower size at maximum, R_{max} :

$$R_{\max} = \sum_{i=1}^{n-1} \frac{\lambda p_T}{E} m^i = \frac{\lambda p_T}{E} \frac{m^n - m}{m - 1} \approx \frac{1}{m - 1} \frac{\lambda p_T}{E_c}$$

• finally shower fluctuations will be driven by the number of interactions:

$$\sigma \propto \sqrt{\frac{N}{m}} = \sqrt{\frac{E}{mE_c}} \qquad \sigma_E / E \propto 1/\sqrt{E}$$

Calorimetry basics: em and had

Electromagnetic showers

-m=2

$$- \lambda = X_0$$

$$- p_T = \sqrt{\frac{4\pi}{\alpha}} m_e c$$

$$-E_c = \frac{800 \text{ MeV}}{Z+1.2}$$

- Shower dimension
 - longitudinal: $L = \ln \frac{E}{E_c} + 14$
 - trasversal: $R = 2\rho_M$, $\rho_M = X_0 \frac{E_s}{E_c}$ (Moliere radius)
- Energy resolution
 - clearly technology dependent

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

Hadronic showers

- *m* ~ 6

$$-\lambda = \lambda_{1}$$

-
$$p_T = p_F \approx 340 \text{ MeV}/c$$

-
$$E_c \approx 2m_{\pi}$$

- Shower dimension
 - longitudinal: $L = 0.2 \ln E[\text{GeV}] + 3.2$
 - trasversal: $R = \lambda_I$
- Energy resolution

ATLAS and CMS

PbWO₄ crystals

25 X₀

3%/√E

Technology					
Steel / Scintillator Cu+W / LAr	Brass / Scintillator				
Depth					
8-10 λ _ι	6-10 λ _ι				
Resolution					
50%/√E	100%/VE				

Technology

Depth

Resolution

Pb (passive) /

LAr (active)

25 X₀

10%/√E

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021
Energy resolution

Comparison of the LHC calorimeters' energy resolution

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

DAQ and Trigger

- Data reduction:
 - from 40 MHz
 bunch crossing rate

UNIVERSITÀ DEGLI STUDI DI MILANO

- to ~1 kHz storage for offline analysis
- 1st level hardware trigger:
 - calorimeters
 - muon systems
 - only trigger components
 - initiate full detector
 readout within a predefined
 latency
 Level-1
 - ~100 kHz rate
- High Level Trigger:
 - in principle full detector information available
 - streamlined offline-analysis algorithms
 - partial (regional) reconstruction

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

The upgrades for HL-LHC

• Trigger/DAQ

- Add tracking at first level trigger, exploit higher granularity
- Improve bandwidth and processing for triggering, increase in latency
- Tracking detectors
 - New all silicon tracking detectors for ATLAS and CMS with extended coverage to $|\eta| < 4$
- Timing detectors New at LHC
 - ATLAS: High granularity timing detector in front of forward calorimeter ATLAS
 - CMS: MIP timing layer around trackers
- Calorimetry
 - **ATLAS**: New FE electronics for Tile and LAr calorimeter (increase granularity)
 - CMS: New High Granularity Calorimeter (HGCAL) in the endcaps and replace electronics in electromagnetic calorimeter
- Muon system
 - ATLAS: New FE electronics and additional units in muon spectrometer
 - **CMS**: Extend forward chambers and replace electronics

For selected items: LHC technology \rightarrow Upgrades for HL-LHC

DAQ and Trigger Upgrades

- Trigger selection defines the acceptance of phsycis measurements
 - compromise between efficiency (on interesting events) and rate (dominated by backgrounds)
- At HL-LHC:
 - signal proportional to luminosity increase
 - background increase due to higher pileup
 - even if improving the recording capability to 10 kHz, it is necessary to be **improve the background rejection**
 - more complex trigger algorithms require **longer latency**, ~2.5 μ s \rightarrow ~12.5 μ s : more memory needed to store data waiting for L1 decision
- This will be a major driver on some detector upgrades:
 - Improved trigger readout granularity
 - Fake reduction
 - Addition of tracking information at L1

CMS L1 Trigger for HL-LHC

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

ATLAS Trigger for HL-LHC

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Silicon Detectors

For HL-LHC, two completely new full-silicon tracking systems

- Extend tracking to $|\eta|=4$
- n-in-p silicon sensors
- Increased particle flux+increased trigger rate: fast data transmission
- Rad-tolerant CMOS FE electronics: 65 nm pixels, 130 nm strips
- Efficient power distribution: serial power in pixel, DC-DC converters in strip
- CO₂ bi-phase cooling
- Carbon structures: stability and low mass

	CMS	ATLAS
Strip pitch [µm]	90-100	70-85
Strip length [cm]	2.5-5	2.5-8
Strip thickness [µm]	300	300
Pixel size [µm²]	25×100 25×1500 (macro)	50×50 (25×100 in L0 barrel)
Pixel thickness [µm]	<150	<150

General layout e performance

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

Silicon Detectors

- The simplest Silicon Detector is a reverse-biased *pn*-junction:
 - The polarization creates a field that prevents diffusion of majority carriers in a depleted region

DI MILANO

- Signal is generated by electronhole pair production by the energy loss of charged particles
- Leakage current from thermal excitation

$$I_{leak} \propto T^2 e^{-\frac{E_g}{k_B T}}$$

- *T* temperature
- E_g band gap
- *k*_B Boltzmann constant
- A depleted region is created spontaneously also in absence of an external polarization:

• Relationships between bias voltage $V_{B'}$ depletion d, electric field E, and dopant concentrations $N_{A,D'}$ can be obtained solving the Poisson equation:

DEGLI STUD

$$\frac{dE_x}{dx} = \frac{\rho}{\varepsilon}$$

- Property determined by the less doped material
 - assuming it is *n*-type: $N_D \ll N_A$

$$E_{\max} = -\sqrt{\frac{2eV_BN_D}{\varepsilon}}$$
$$d = x_p = \sqrt{\frac{2\varepsilon V_B}{eN_D}}$$
$$C = \varepsilon \frac{A}{d} = A \sqrt{\frac{\varepsilon eN_D}{2V_B}}$$

- Previous formulae are valid as long as the depleted region thickness *d* is smaller then the actual device thickness *w*
- The depletion voltage V_{depl} is defined by x = w:

$$w = \sqrt{\frac{2\varepsilon V_{depl}}{eN_D}} \implies V_{depl} = \frac{w^2 eN_D}{2\varepsilon}$$
$$E(x) = -\frac{eN_D}{\varepsilon}(w - x) = -\frac{2V_{depl}}{w^2}(w - x)$$

• For $V_{\rm B} > V_{\rm depl}$, *E* may change at most by a constant:

$$E(x) = -\frac{2V_{depl}}{w^{2}}(w-x) - \frac{V_{B} - V_{depl}}{w}$$

There is no region with null field: faster charge collection (see next slide)

$$2V_{depl}/w$$

E

Drift and diffusion of charge carriers

• If $n(\vec{x})$ and $p(\vec{x})$ are inhomogeneous concentrations of free electrons and holes, their corresponding current densities *J* are:

$$\vec{J}_p = qp\mu_h \vec{E} - qD_p \vec{\nabla} p$$
$$\vec{J}_n = -qn\mu_e \vec{E} + qD_n \vec{\nabla} n$$
$$\vec{J} = \vec{J}_p + \vec{J}_n$$

• The drift velocities are

$$\begin{aligned} v_{D,h} &= \mu_h E \\ v_{D,e} &= -\mu_e E \end{aligned}$$

• Relationships are linear as far as

 $v_D \ll v_{\rm thermal}$

• above v_D saturates at approximately 0.8×10^7 cm/s

In the linear region the mobility μ is related to the collision time τ_c and the effective carrier mass m^* :

$$\mu_h = \frac{q\tau_c}{m_h^*}$$
$$\mu_e = \frac{q\tau_c}{m_e^*}$$

• in this situation also holds Einstein's relation:

$$D_{p,n} = \frac{k_B T}{q} \mu_{h,e}$$

- At room temperature:
 - $\mu_h = 480 \text{ cm}^2/\text{Vs}$
 - μ_n = 1350 cm²/Vs
- A useful relation is the resistivity

$$\rho = \frac{1}{q(n\mu_e + p\mu_h)}$$

- assuming it is *n*-type, $N_D \ll N_A$: $\rho = \frac{1}{N_D \mu_e}$ which is a macroscopical measurable quantity (unlike N_D)

 Similar to gas discharges, it is possible to achieve charge multiplication when the energy gained between two collisions is larger than the excitation energy.

$$\begin{split} \Delta E_{\rm kin} &= -q \Delta V \approx q E \Delta x \\ &= \left| q E \upsilon_{\rm drift} \tau_c \right| = \left| q \right| E^2 \mu \tau_c \end{split}$$

$$\Delta E_{\rm kin} > E_G \implies E_{\rm bd} = \sqrt{\frac{E_G}{E_G}}$$

 $\int q \mu \tau_c$

– *E*_{bd} ≈3×10⁵ V/cm

• The maximum value of the field is at the junction:

$$E(0) = \frac{eN_D x_n}{\varepsilon} = \frac{1}{\varepsilon \rho \mu_e} \sqrt{2\varepsilon \rho \mu_e V_0} = \sqrt{\frac{2V_0}{\varepsilon \rho \mu_e}} \qquad V_{\rm bd} = \frac{\varepsilon \rho \mu_e}{2} E_{\rm bd}^2$$

• In real life dominated by implantation shapes and defects.

A. Andreazza - LHC: Detectors and upgrade

- The most critical requirement for operation at the HL-LHC is **radiation hardness**
- Two main radiation effects:
 - Bulk damage: damage of the crystal lattice
 - increase of leakage current
 - change of "effective" doping concentration
 - trapping of charge carriers
 - depends on Non-Ionizing Energy Loss (NIEL)
 - measured relatively to the one induced by a fluence of 1 MeV neutrons
 - Surface damage: concentration of surface charge
 - affecting the electric field and breakdown voltage
 - proportional to Total Ionization Dose (TID)

UNIVERSITÀ DEGLI STUDI DI MILANO

- Production of several energy levels in the band gap
- Defect may diffuse: it changes with time

Example : Energy Levels of impurities in Si

Da: S. M. Sze, Physics of Semiconducor Devices, Wyley & Sons, Singapore, 1981

Radiation effects

Leakage current

- Increasing leakage current:
 - source of noise in the readout electronics \sqrt{I}
 - increase power dissipation
- Reduce detector operational temperature

Effective doping concentration

- Increasing the amount of defects increase the electric field needed to deplete the detector
- Smears out gradients of doping concentration:
 - higher breackdown voltage

Radiation effects

- Trapping probability per unit time:
 - The longer the collection time the more likely charge carriers are lost
- Increase applied electric field
- Thin sensors behave better

- ATLAS Strip sensor:
 - 320 μm thick silicon
 - 75.5 μm strip pitch

Planar and 3D detectors

- The radiation level is particularly severe for detectors near to the interaction region:
- 3D detectors are an option to increase radiation hardness my improving charge collection
 - larger capacitance (higher noise)
 - more complex fabrication steps
 - preferred choice for innermost layers
 particle

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

FBK 3D Sensors

UNIVERSITÀ DEGLI STUDI DI MILANO

How real modules looks like

57

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

Tracking at trigger level

CMS p_T module concept

- p_T discrimination in FE electronics by providing correlations between closely space doublet of sensors.
- Send to trigger only "stubs" (hit pairs) compatible with particle of $p_T > 2 \text{ GeV/c}$
- Data reduction by factor 10-20:
 - at HL-LHC expect 7000 tracks/BX, but only 200 with p_T >2 GeV/c
 - still data rate of 30 TB/s, and 15k stubs to start pattern recognition
- Highly parallel processing + full FPGA based system

CMS Track Trigger performance

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

TIMING MEASUREMENTS

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Timing motivations

- Vertex density at HL-LHC does not allow to reconstruct primary vertices by spatial information alone.
- Due to the finite size of the bunch, interactions do not happen all at the same time but have a distribution with standard deviation

$$\sigma_t = \frac{\sigma_z}{c} \approx \frac{5 \text{ cm}}{c} \approx 180 \text{ ps}$$

• Timing information helps in separating random geometrical overlaps if $\sigma_t < 30 \text{ ps}$

UNIVERSITÀ DEGLI STUDI DI MILANO

Timing motivations

UNIVERSITÀ DEGLI STUDI DI MILANO

- At large $|\eta|$ tracker resolution is worse than primary vertices separation
- Large contamination of tracks from pileup events: wrong computation of missing energy
- Timing separation allows to reduce contaminations at the same level as during Run-2
- CMS also explored impact on particle identification during heavy ion runs and detection of long-lived particles.

- Associate timing measurement to each reconstruncted track.
- ATLAS: High Granularity Timing Detector (HGTD)
 - based on LGAD detectors
 - covering the region 2.4< $|\eta|$ <4

- CMS: MIP Timing Detector (MTD)
 - LGAD detectors in the forward region
 1.6<|η|<3
 - Scintillators (LYSO+SiPM) layer
 in the barrel |η|<1.45

Low Gain Avalanche Diodes

- Silicon detector with internal gain
- Arrival time defined as the time of crossing a predefined threshold
- Planar geometry to reduce arrival time fluctuatios and distorted electric field
- granularity limited by cross-talk between nearby electrodes

LGAD Radiation Hardness

- Radiation damage may cause loss of signal:
 - trapping of primary ionization
 - smearing of the highly doped multiplication region
- In the current prototyping phase detectors seem to maintain adequate timing resolution.
- Possible mitigation is replacement of most irradiated sensors (HGTD) and multiple measurements to reduce uncertainties

65

43836 34

Si1MeV_{n_eq} fluence in the outermost layer [cm⁻²] 01 ₉₁

1016

32

ATLAS Simulation

Total Neutrons

50

60

Radius [cm]

70

Other particles

FLUKA Simulation

L_{int} = 4000 fb⁻

20

30

LGAD perspectives

- Main limitation of current LGADs is the segmentation:
 - 1.3 mm x 1.3 mm for both HGTD and MTD:
 - dead regions to avoid afterpulsing in nearby channels
 - different ideas being working outin in order to go towards a full 4Dsensor

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

UNIVERSITÀ DEGLI STUDI DI MILANO

~3x3x57 mm³

E_{dep}~3 MeV/MIP

MTD: Barrel Timing Layer

- Main constraint for the barrel layer is to fit in the 40 mm gap between the CMS tracker and ECAL
- LYSO crystal bars 3x3x57 mm
- read at both ends by SiPM
- Radiation effect in the Dark Count Rate of the SiPM
- Important thermal management to keep the detector at low temperature / noise suppression in the front-end chip

BTL Module 2x16 LYSO Crystals 2*32 Channels

768 Channels

332K channels

Recent test beam results

- Time resolution from average of both ends SiPM 25 ns
- spatial resolution along the bar, from time difference, 3 mm

CALORIMETRY

CMS Barrel EM Calorimeter

• PbWO4 crystals

- 23 cm (26 X $_0$) x 2.2 cm (~1 ho_M)
- isolated em shower contained in 3x3 crystals

n+

 π +

p+

р

+

Efield

n contact

p contact

- 4.5 photons / MeV
- APD (Avalanche PhotoDiode) readout
 - 6 μm eff. thickness
 - 50x gain
- Front-end electronics
 - 250 nm CMOS
 - CR-RC shaping
 - $\tau = 40 \text{ ns}$
 - ENC = 8 ke

Parameter:	: <i>ρ</i>	MP	X_0^*	R_M^*	dE/dx^*	λ_I^*	$ au_{ m decay}$	$\lambda_{ m max}$	n^{\dagger}	Relative output [‡]	Hygro- scopic?	d(LY)/dT
Units:	g/cm	³ °C	cm	cm	MeV/cm	cm	ns	nm			F	%/°C§
NaI(Tl)	3.67	6 51	2.59	4.13	4.8	42.9	245	410	1.85	100	yes	-0.2
BGO	7.13	1050	1.12	2.23	9.0	22.8	300	480	2.15	21	no	-0.9
BaF_2	4.89	1280	2.03	3.10	6.5	30.7	650^{s}	300^{s}	1.50	36^s	no	-1.9^{s}
							$< 0.6^{f}$	220^{f}		4.1^{f}		0.1^{f}
CsI(Tl)	4.51	621	1.86	3.57	5.6	39.3	1220	550	1.79	165	slight	0.4
CsI(Na)	4.51	621	1.86	3.57	5.6	3 9.3	690	420	1.84	88	yes	0.4
CsI(pure)	4.51	621	1.86	3.57	5.6	39.3	30^s	310	1.95	3.6^{s}	slight	-1.4
							6^{f}			1.1^{f}		
PbWO ₄	8.30	1123	0.89	2.00	10.1	20.7	30^s	425^{s}	2.20	0.3^{s}	no	-2.5
							10 ^f	420^{f}		0.077^{f}		
LSO(Ce)	7.40	2050	1.14	2.07	9.6	20.9	40	402	1.82	85	no	-0.2
PbF_2	7.77	824	0.93	2.21	9.4	21.0	-	-	-	Cherenkov	no	-
CeF_3	6.16	1460	1.70	2.41	8.42	23.2	30	340	1.62	7.3	no	0
LaBr ₃ (Ce)	5.29	783	1.88	2.85	6.90	30.4	20	356	1.9	180	yes	0.2
CeBr ₃	5.23	722	1.96	2.97	6.65	31.5	17	371	1.9	165	yes	-0.1

CMS EB: Radiation Effects

Longitudinal transmission after gamma irradiation & proton irradiation

• PbWO4 crystals

- Creation of color centers due to atomic displacement in the crystal
- Shift of the absorption edge, overlapping with the peak of photon emission spectrum
- Reduced transmission in the material
- Light output at and of Phase2 reduced to 25—40%, depending on η
- APD
 - Main effect is the displacement damage in the silicon bulk
 - Causing increase in dark current I_{Dark}
 - Noise term if proportional to $\sqrt{I_{Dark}}$
 - A factor 10 increase on noise term (~1 GeV at 3000 fb⁻¹)
- Mitigation
 - Operation at lower temperature
 - I_{Dark} reduces by about a factor 2 every 8 °C

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

A. Andreazza - LHC: Detectors and upgrade

Integrated Luminosity (fb⁻¹)

CMS EB: Pileup Mitigation

- Cannot change the detector, so upgrade the readout electonics
- Front-end
 - Effect of pileup signals from nearby bunches
 - Increase in dark current I_{Dark} due to radiation damage
 - Both contribution reduced by fast shaping time
 - Trans Impedence Amplifier
 - Sampling at 160 MHz
- L1 Trigger signal
 - Current detector integrates the signals of a 5x5 crystals towers
 - cannot apply isolation cuts
 - Includes an on chip suppression of spikes
 - large signals in individual APD
 - due to hadronic interactions in the sensor
 - move full data of each crystal off-detector
 - perform pulse shape analysis and trigger algorithm (isolation, spike rejection) on FPGA

CMS EB: Pileup Mitigation

- Cannot change the detector, so upgrade the readout electonics
- Front-end
 - Effect of pileup signals from nearby bunches
 - Increase in dark current I_{Dark} due to radiation damage
 - Both contribution reduced by fast shapging time
 - Trans Impedence Amplifier
 - Sampling at 160 MHz
- L1 Trigger signal
 - Current detector integrates the signals of a 5x5 crystals towers
 - cannot apply isolation cuts
 - Includes an on chip suppression of spikes
 - large signals in individual APD
 - due to hadronic interactions in the sensor
 - move full data of each crystal off-detector
 - perform pulse shape analysis and trigger algorithm (isolation, spike rejection) on FPGA

ATLAS Liquid Argon Calorimeter

- Sampling calorimeter
 - Pb absorber
 - LAr active ~2 mm gap

UNIVERSITÀ DEGLI STUDI DI MILANO

- Segmented Cu electrode
- Reduced sensitivity to irradiation
- Lateral and **longitudinal** segmentation
 - $\quad \pi^0 \text{ identification by } \gamma \text{ separation} \\ \text{ at the beginning of the shower} \\$
 - direction measurement
 - leakage corrections
- Readout electronics
 - CR-(RC)² bipolar shaping to reduce pileup effects
 - Optimal performance at τ_{shaper} = 13 ns
 - 40 MHz sampling
 - Optimal filtering for energy measurement
 - Update FE and readout system and L1 trigger improvements

ATLAS LAr upgrades

L1 Trigger

- L1 trigger had access only to total energy in a tower $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$
- During LS2 upgraded to provide _ more granular Super Cell output
- improved energy determination and shower shape pe variables

0.12

0.08

0.06

0.04

0.02

-50

0.1

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

CMS High Granularity Calorimeter

- Radiation damage in the forward calorimeter region much higher than in barrel
 - Same values as in the tracker region

UNIVERSITÀ DEGLI STUDI DI MILANO

- PbWO₄ crystals will degrade excessively after 500 pb⁻¹
- Complete replacement of endcap calorimetry:
 - Electromagnetic section CE-E
 - **Silicon** + Cu, CuW, Pb, 26 layers, 28 X₀, ~1.5 λ
 - Hadronic section CE-E
 - Scintillators and Silicon + Steel, 7+14 layers, ~8.5 λ
 - Polytilene shield to reduce albedo neutrons into the tracker

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

The Silicon Module

- Total of 620 m² of silicon sensors
- Hexagonal tiles from 8"wafer

UNIVERSITÀ DEGLI STUDI DI MILANO

- Different sensors depending on radiation level:
 - 1.18 cm² cell on 300 μ m substrate
 - 1.18 cm^2 cell on 200 μm substrate
 - 0.52 cm^2 cell on 120 μm substrate

Sensor radiation hardness

- Radiation level comparable with silicon tracker
- Thin sensors provides required radiation hardness
- Cell size adapted to maintain sufficiently low sensor capacitance (<65 pF)
- Operation at -30 °C to reduce leakage current

- Total of 320 m² of silicon sensors
- 3 mm thick scintillator tiles ranging from 2 × 2 cm² to 5.5 × 5.5 cm² area
- 2 mm² SiPM-on-tile readout

UNIVERSITÀ DEGLI STUDI DI MILANO

- Cooling at -30 °C helps in keeing low dark rate even after radiation damage
- MIP's S/N>5 for the whole detector lifetime

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

HGCAL: HGROC FE

HGROC3 characteristics

UNIVERSITÀ DEGLI STUDI DI MILANO

- Same readout chip for Si and SiPM readout
- 72 channels
- <20 mW power
- Radiation tolerant: 2 MGy and $1 \times 10^{16} n_{eq}/cm^2$
- ENC<2500 e with 65 pF load
- Timing resolution of 10s ps
- On chip zero suppression
- Fixed latency path for sum of trigger cells

HGCAL: Trigger signal

On detector

- zero suppression
- analog sum
- Latency 1.5 µs

Off detector

- 3D clustering
- η - ϕ energy map
- Latency 3.5 µs

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

HGCAL: Test beam images

82

MUON SYSTEM

ATLAS Muon System

Thin-gap chambers (TGC)

Trigger

- RPC (Resistive Plate Chambers)
- TGC (Thin gap chambers)
- Fast signal (short drift distance)
- Measurement on the perpendicular coordinate.

The Muon System has two functions:

different detector technologies

Precision Tracking

- MDT (Monitored Drift Tubes)
- CSC (Cathode Strip Chambers)
- Precision measurements on the bending plance for momentum determination
- Measurement of drift time

UNIVERSITÀ DEGLI STUDI DI MILANO

Gas detector basics

Keywords to remember

- Primary ionization tens of e-/cm
- Electron drift velocity $O(cm/\mu s)$
- Moltiplication in high electric field near the collecting electrode
- Space charge of positive ions distorts the electric field

Gas	Density, $mg cm^{-3}$	$E_x \\ eV$	$E_I \\ eV$	$_{ m eV}^{W_I}$	$\frac{dE/dx}{\mathrm{keVcm^{-1}}}$	${N_P \over cm^{-1}}$	${ m m}_{ m cm^{-1}}^{N_T}$
Ne	0.839	16.7	21.6	30	1.45	13	50
Ar	1.66	11.6	15.7	25	2.53	25	106
Xe	5.495	8.4	12.1	22	6.87	41	312
CH ₄	0.667	8.8	12.6	30	1.61	37	54
C_2H_6	1.26	8.2	11.5	26	2.91	48	112
iC_4H_{10}	2.49	6,5	10.6	26	5.67	90	220
CO ₂	1.84	7.0	13.8	34	3.35	35	100
CF ₄	3.78	10.0	16.0	54	6.38	63	120

primary electron proceeds towards the anode, in regions of increasingly high fields, experiencing ionizing collisions; due to the lateral diffusion, a drop-like avalanche, surrounding the wire, develops. Electrons are collected in a very short time (1 nsec or so) and a cloud of positive ions is left, slowly migrating towards the cathode.

750

1000

0

2

ंड

x (a.u)

500

Voltage, volts

V_ 250

ATLAS Muon Drift tubes

- 30 mm diameter
- 50 μ m wire diameter
- Ar/CO_2+H_2O gas mixture
- 20000 gain at 3080 V
- 700 ns max drift time

Entries / (10 TDC counts)

2500

2000

1500

1000

500

500

1000

Point resolution ~100 µm

Drift Time Spectrum

cks at tube

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

1500

2000

ATLAS Muon Trigger Detectors

RPC

- Parallel plate capacitors with high electric field
- E = 4.8 kV/mm, gain 10⁷
- Time resolution 1.9 ns

TGC

- Proportional chamber with small gas gaps
- 50 μ m anode wire
- Gain 3 × 10⁵ at 2.9 kV
- Response time <25 ns with 99% probability

CMS Muon System

- Drift Tubes (barrel) and Cathode Strip Chambers (endcap) for trigger+tracking
- **RPC** for trigger with 1 ns time resolution

Muons System for HL-LHC

- Detector for the muon systems where initially designed for:
 - the nominal LHC rate corresponding to 1034 cm-2s-1
 - radiation damage corresponding to a total integrated luminosity of 500 fb-1
- Many different interventions are needed to cope with the higher particle rate (in particular electronics improvement)
- Radiation damage ~released charge per unit area/length
 - can be tuned by reducing gain at the cost of performance
- I'll shortly discuss only two upgrades:
 - addressing the most critical forward region deploing large areas fo micropattern gas detectors

ATLAS New Small Wheels

- Most L1 muon trigger in the forward regions are fake.
 - They need to be rejected more efficiently to stay within the HL-LHC trigger rate budget
- Match between track segments before and after the forward toroid
- The current detector has not the efficiency and accuracy needed
- Replace the detectors in front of the toroid with New Small Wheels (NSW)

- Detector requirements:
 - contribute to L1 trigger
 - reconstruct online track segments with
 >95% efficiency
 - position resolution <50 μ m
 - angular resolution <1 mrad
 - sustain rate and radiation levels at HL-LHC
- Replace CSC+MDT with **Micromegas** detectors for precision tracking
- Replace TCGs for **sTGC** for trigger

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

ATLAS New Small Wheels

- micromesh transparent to electrons
- separate the drift and charge multiplication region
- finely segmented readout pitch
- NSW parameters
 - Ar/CO2 93%/7%
 - Short drift time: 100 ns
 - Spatial resolution <50 μ m

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

91

CMS Forward region updgrade

XXXII Int. Seminar of Nuclear and Subnuclear Physics "Francesco Romano", 7 June 2021

A. Andreazza - LHC: Detectors and upgrade

92

CONCLUSIONS

Conclusions

- LHC has exceeded the design expectation
 - the machine is already running at twice its design luminosity
 - detectors are behaving greatly, despite the harsher conditions
 - ...and you will see physics analysis are doing even better
 - I hope to have shown you the key techniques and choice that made that possible
- The HL-LHC upgrade is not a free lunch
 - an enormous amount of time and ingenuity has been spent to prepare the detector upgrades
 - that sometimes required to find innovative solutions to old problems
 - hope to meet you again in seven years and celebrate success
 - for the time being....

Thanks for giving me the opportunity to share my enthusiasm with you

94