Ultra-relativistic heavy-ion physics

[MADAI collab.]

Alexander Kalweit, CERN

XXXII International seminar of nuclear and subnuclear physics "Francesco Romano", Otranto 2021

Overview

- Two lectures today: $-09:00h \rightarrow 10:50h$
 - $15:00h \rightarrow 16:00h$
- Feel free to contact me for any questions regarding the lecture: <u>Alexander.Philipp.Kalweit@cern.ch</u>
- Many slides, figures, and input taken from:

Jan Fiete Grosse-Oetringhaus, Constantin Loizides, Federico Antinori, Roman Lietava, Francesca Bellini

Outline of this lecture

- Introduction
- The QCD phase transition
- QGP thermodynamics
 - Particle chemistry
 - QCD critical point and onset of de-confinement
 - (anti-)(hyper-)nuclei
 - Radial and elliptic flow
- Hard scatterings Nuclear modification factor
 - Jets
- Heavy flavor in heavy-ions
 - Open charm and beauty
 - Quarkonia
- Di-leptons

→ Heavy-ion physics is a huge field with many observables and experiments: impossible to cover all topics! I will present a personally biased selection of topics.

"Soft" probes

"Hard" probes

Introduction

pp / p-Pb / Pb-Pb collisions

- The LHC can not only collide protons on protons, but also heavier ions.
- Approximately one month of running time is dedicated each year to heavy-ions.

Heavy-ions at the LHC

Energy per nucleon in a ${}^{208}_{82}$ Pb-Pb collision at the LHC (Run 1):

- pp collision energy $\sqrt{s} = 7 \text{ TeV}$
- beam energy in pp $E_{\text{beam}} = 3.5 \text{ TeV}$
- Beam energy per nucleon in a Pb-Pb nucleus: $E_{beam,PbPb} = 82/208* 3.5 = 1.38 \text{ TeV}$
- Collision energy per nucleon in Pb-Pb: $\sqrt{s_{NN}} = 2.76$ TeV
- Total collision energy in Pb-Pb: $\sqrt{s} = 574 \text{ TeV}$
- Run 2: $\sqrt{s_{NN}} = 5.02$ TeV and thus $\sqrt{s} = 1.04$ PeV

→ What can we learn from these massive interactions?

Heavy-ion experiments

→ By now all major LHC experiments have a heavy-ion program: LHCb took Pb-Pb data for the first time in November 2015.

Low energy frontier: RHIC (BES), SPS → future facilities: FAIR (GSI), NICA

Increasing the beam energy over the last decades...

..from early fixed target experiments at GSI/Bevalac and SPS to collider experiments at RHIC and LHC.

Energy ranges covered by different non-LHC accelerators

→ Collider experiments allow for very high $\sqrt{s_{NN}}$ and fixed target experiments allow for very high interaction rates at lower $\sqrt{s_{NN}}$.

LHC Run 2

- LHC Run 2 data taking is now completed and the analysis is now in full swing.
- Significant increase in integrated luminosity (approx. 4 times in Pb-Pb) allow more precise investigation of rare probes.
- Various collision systems at different center-of-mass energies are ideally suited for systematic studies of particle production.

System	Year(s)	√s _{NN} (TeV)	L int
	2010-2011	2.76	~75 µb⁻¹
Pb-Pb	2015	5.02	~250 µb⁻¹
	2018	5.02	~0.9 nb ⁻¹
Xe-Xe	2017	5.44	~0.3 µb⁻¹
n Dh	2013	5.02	~15 nb⁻¹
р-г р	2016	5.02, 8.16	~3 nb ⁻¹ , ~25 nb ⁻¹
рр	2009-2013	0.9, 2.76, 7, 8	~200 µb ⁻¹ , ~100 nb ⁻¹ , ~1.5 pb ⁻¹ , ~2.5 pb ⁻¹
	2015,2017	5.02	~1.3 pb ⁻¹
	2015-2017	13	~25 pb⁻¹

LHC Run 3 and 4

Major detector upgrades in long shutdown 2 (2019-2021) will open a new era for heavy-ion physics:

- New pixel Inner Tracker System (ITS) for ALICE
- GEM readout for ALICE TPC => continuous readout
- SciFi tracker for LHCb
- 50 kHz Pb-Pb interaction rate

Replace wire chambers with GEMs

The QCD phase transition

The standard model

The standard model describes the **fundamental** building blocks of matter (**Quarks** and **Leptons**) and their **Interactions**:

- 1. Elektromagnetic: γ
- 2. Weak interaction: W&Z
- 3. Strong interaction: Gluons
- 4. Gravitation: Graviton?

Dramatic confirmation of the standard model in the last years at the LHC: discovery and further investigation of the Higgs-Boson.

However, no signs of physics beyond the standard model were found so far (SUSY, dark matter..).

→ In heavy-ion physics, we investigate physics within the standard model and not beyond it.

→ Discovery potential in many body phenomena of the strong interaction (as in QED and solid state physics: magnetism, electric conductivity, viscosity,..)!

[https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg]

Heavy-ions and Quantum Chromodynamics

Heavy-ion physics is the physics of high energy density Quantum Chromodynamics (QCD):

(De-)confinement (1)

- QCD vacuum:
 - Gluon-gluon self-interaction (non abelian) ightarrow in contrast to QED
 - QCD field lines are compressed in a flux tube

(De-)confinement (2)

- Pulled apart, the energy in the string increases.
- New q-qbar is created once the energy is above the production threshold as it is energetically more favorable than increasing the distance further.
- No free quark can be obtained \rightarrow confinement.
- Percolation picture: at high densities / temperatures, quarks and gluons behave quasifree and color conductivity can be achieved: Quark-Gluon-Plasma (QGP).

[[]illustration from Fritzsch]

Ab-initio QCD calculations

- Ab-initio: a calculation without modeling (and model parameters), but directly derived from the basic theory and only based on fundamental parameters.
- In QCD, there are two *ab-initio* approaches relevant for heavy-ion physics:
 - Perturbation theory: pQCD
 - Lattice QCD: LQCD
- Perturbation theory is only applicable for small values of α_s:
 → only possible for large momentum transfers as in jets.
- (De-)confinement cannot be described by pQCD, but with LQCD!

Soft and hard probes (1)

Phenomenologically, we can distinguish:

A *thermal* (*soft QCD*) part of the transverse momentum spectrum which **contains most of the yield** and shows roughly an exponential shape (thermal-statistical particle chemistry and flow).

A hard part (power-law shape, **pQCD**) which is studied in jet physics (energy loss mechanisms etc., R_{AA} in heavy-ion physics)

→ Even at LHC energies ~98% of all particles are produced at p_T < 2 GeV/*c*.

 \rightarrow ~80% are pions, ~13% are kaons, ~4% are protons.

The bulk of the produced particles is not accessible with pQCD methods.

Soft and hard probes (2)

Phenomenologically, we can distinguish:

A *thermal* (*soft QCD*) part of the transverse momentum spectrum which **contains most of the yield** and shows roughly an exponential shape (thermal-statistical particle chemistry and flow).

A hard part (power-law shape, **pQCD**) which is studied in jet physics (energy loss mechanisms etc., R_{AA} in heavy-ion physics)

→ Even at LHC energies ~98% of all particles are produced at p_T < 2 GeV/*c*.

 \rightarrow ~80% are pions, ~13% are kaons, ~4% are protons.

The bulk of the produced particles is not accessible with pQCD methods.

Lattice QCD (LQCD)

- Solve QCD numerically by discretizing Lagrangian on a space-time grid.
- Static theory, no dynamical calculations possible as computations are done in imaginary time (T → IT).
- Only directly applicable (extrapolation methods exist) to systems with no netbaryon content:

number of baryons = number of antibaryons

(early universe, midrapidity LHC $\rightarrow \mu_{P} \approx 0$ MeV)

- $\rightarrow \mu_{\rm B} \approx 0$ MeV)
- Computationally very demanding → dedicated supercomputers.

Lattice QCD

JUGENE in Jülich (294,912 cores, ~ 1 PetaFLOPSS

QGP as the asymptotic state of QCD (1)

Quark-Gluon-Plasma (QGP): at extreme temperatures and densities quarks and gluons behave quasi-free and are not localized to individual hadrons anymore.

QGP as the asymptotic state of QCD (2)

Quark-Gluon-Plasma (QGP): at extreme temperatures and densities quarks and gluons behave quasi-free and are not localized to individual hadrons anymore.

QGP as the asymptotic state of QCD (3)

Quark-Gluon-Plasma (QGP): at extreme temperatures and densities quarks and gluons behave quasi-free and are not localized to individual hadrons anymore.

Steep rise in thermodynamic quantities due to change in number of degrees of freedom → phase transition from hadronic to partonic degrees of freedom.

Smooth crossover for a system with net-baryon content equal 0. For a first order phase transition, the behavior would be not continuous.

Chiral symmetry

- QCD Lagrangian is symmetric under $SU(2)_L \times SU(2)_R$ \rightarrow In the dynamics of QCD, the interaction between right handed (spin parallel to momentum vector) and left handed (spin anti-parallel to momentum vector) quarks vanishes in the case of massless quarks.
- Light quarks have a finite small bare (current) mass
 → explicit breaking of chiral symmetry.
- Creation of coherent q-qbar pairs in QCD vacuum (as in cooper pairs in superconductivity).
 - Has a non-zero chiral charge
 - Not symmetric under $SU(2)_L \times SU(2)_R$
 - \rightarrow spontaneous symmetry breaking in the QCD ground state (pseudo-goldstone boson: pions)
- Quarks acquire ~350 MeV additional (constituent) mass
 - Only relevant for the *light* u,d,s quarks.

Spontaneous breaking of chiral symmetry

- Consequences:
 - Isospin symmetry: constituent quark masses $m_{\rm u} \approx m_{\rm d} \rightarrow$ isospin symmetry
 - Isospin symmetry is not based on a fundamental relation, but due to the fact that the acquired masses are much larger than the bare masses
 - m(nucleon) >> m(bare u+u+d) 938 MeV >> ~10 MeV
- In the QGP, chiral symmetry is expected to be restored!

Spontaneous and explicit symmetry breaking

 \rightarrow Best explained in an analogy to ferromagnetism:

QCD	Ferromagnetism
 chiral symmetry 	• symmetry of \hat{H} under rotations of spin axis
• quark-antiquark-condensate $<\overline{\psi}\psi>$	• magnetisation $M = <\uparrow>$
 <i>explicit symmetry breaking</i> by current mass m_{curr} 	 explicit symmetry breaking by external magnetic field h
• <i>spontaneous symmetry</i> <i>breaking</i> by constituent mass m _{cons} for T < T _C	 spontaneous symmetry breaking by quantum mechanical exchange forces for T < T_c (Curie temperature)

Magnetic domains

Chiral and de-confinement transition

- Both phase transitions take place at the same temperature in Lattice QCD (de-confined ↔ confined and chiral symmetry restored ↔ chiral symmetry broken).
- The fact that both phase transitions occur at the same temperature is not linked from first principles QCD!

→ Experimental verification: dileptons and net-charge fluctuations (see later).

Summary: phase transitions from 0 to 10¹³ K

- Even in our everyday life we realise that matter comes in various forms:
 Solid → liquid → gas → plasma (*de-localisation*) ~0 K → ~ 273 K → ~ 373 K → ~2000K
- In our life as heavy-ion physicist, we continue further:
 - First, around T=10 MeV (1.1·10¹¹K), the nucleons are not bound to nuclei anymore (low energy heavy-ion experiments at a few 100 MeV beam energy).

 Then, at around T=156MeV (1.8·10¹²K) the (de-)confinement and chiral symmetry phase transition.

Phase transition: A phase transition is of nth order if discontinuities in variations transverse to the coexistence curve occur for the first time in the nth derivatives of the chemical potential (Ehrenfest definition).

The phase diagram of QCD (1)

- The thermodynamics of QCD can be summarized in the following (schematic) phase diagram.
- Control parameters: temperature T and baryo-chemical potential μ_B .
- At LHC-energies ($\sqrt{s} = 5.02 \text{ TeV}$): $\mu_B \approx 0 \text{ MeV} \ll T_{ch}$
- At SIS18: (\sqrt{s} = 2.4 GeV): $\mu_B \approx 883$ MeV >> T_{ch}

→ Different regions of the phase diagram are probed with different $\sqrt{s_{NN}}$. => beam energy scan (BES) at RHIC.

The phase diagram of QCD (2)

→ Alternative representation which is not used in practice, but to emphasize more the similarity to the phase diagram of water.

The baryochemical potential μ_{B}

• In contrast to the (chemical freeze-out) temperature *T*, the baryochemical potential is a less intuitive quantity...

 $\mu_{\rm B} = 1 \text{ MeV}$

h/h

 $\mathbf{K}^{-}/\mathbf{K}^{+}$

 $\overline{\Omega}^{+}/\Omega^{-}$

 $\overline{\Xi}^+/\Xi^-$

 $\overline{\Lambda}/\Lambda$

 $\overline{q}/\overline{q}$

160

T (MeV)

180

• It quantifies the net-baryon content of the system (baryon number transport to midrapidity).

fundamental thermodynamic relation

 $\mathrm{d} U = T \, \mathrm{d} S - p \, \mathrm{d} V + \Sigma \mu_i \, \mathrm{d} n_i \quad .$

$$\Rightarrow \mu_i := \left(\frac{\partial U(S,V,n_j)}{\partial n_i}\right)_{S,V,n_{j\neq i}}$$

$$\mu_B \approx 0 \implies \bar{p}/p \approx 1$$

However, (anti-)nuclei are more sensitive:

$$\frac{n_{\overline{p}}}{n_{p}} = e^{-(2\mu_{B})/T} \qquad \frac{n_{\overline{d}}}{n_{d}} = e^{-(4\mu_{B})/T}$$
$$\frac{n_{3\overline{He}}}{n_{3\overline{He}}} = e^{-(6\mu_{B})/T}$$

QGP and the early universe (1)

- Big bang in the early universe and little bang in the laboratory.
- The Universe went through a QGP phase about 10ps after its creation and froze out into hadrons after about 10µs which later formed nuclei.
- In addition, there are similarities between the big bang (universe QGP) and the little bang (heavyions) concerning the decoupling.

QGP and the early universe (2)

- Decoupling: different type of particles fall out of thermal equilibrium with each other and *freeze out* when the mean free path for interaction is comparable to the size of the expanding system.
- Examples of this analogy:
 - Early Universe: neutrinos decouple early as their interaction is weak.
 - Heavy-ions:
 - chemical freeze-out (inelastic interactions changing particle type) happens before kinetic freeze-out (elastic interactions changing only momenta)
 - Kinetic freeze-out of strange particles might happen before the kinetic freeze-out of non-strange particles

Can we reach such temperatures in the experiment?

 \rightarrow We would need initial temperatures of more than 200 MeV.

 \rightarrow Let's look first at a schematic evolution of a heavy-ion collision:

What is the

temperature

Production of colour medium and equilibration

QGP and expansion

Hadronisation and Chemical freeze-out

Kinetic freeze-out

Direct photons – black body radiation from the QGP

The challenging measurement of direct (subtract decay such as $\pi^0 \rightarrow \gamma\gamma$) photons gives access to the initial temperature of the system created in heavy-ion collisions. However, model comparisons are needed as direct photons are also emitted at later stages of the collision.

$T_{\rm eff} = 304 \pm 11 \pm 40 \; {\rm MeV}$

→ Effective temperature of approx. 300 MeV is observed as a result of a high initial temperature and the blueshift due to the radial expansion of the system.

42

QGP thermodynamics and soft probes

Thermodynamics

- It is important to distinguish between:
 - a system of individual particles
 - a *medium* in which individual degrees of freedom do not matter anymore and thermodynamic (hydrodynamic) concepts (many body theories) can be applied.
- Thermodynamic (hydrodynamic) are typically used for systems with 10⁵-10²³ particles in *local thermodynamic equilibrium*.

– Average (minimum bias) pp collision at the LHC: $dN_{ch}/d\eta \approx 6$

• Lifetime of the system must be long enough so that equilibrium can be established by several (simulations indicate 5-6) interactions between its constituents.

With only 6 particles, it sounds hopeless.. But how many particles are created in a massive heavy-ion collision? Let's measure it..

Geometry of heavy ion collisions

How many particles are created in such a collision?

46

$dN_{ch}/d\eta$ in 5.02 TeV Pb-Pb collisions at the LHC

 $dN_{ch}/d\eta \approx 1943 \pm 54$ at midrapidity.

→ Even at LHC energies, 95% of all particles are produced with $p_T < 2$ GeV/c in pp and Pb-Pb collisions.

→ Bulk particle
production and the
study of collective
phenomena are
associated with "soft"
physics in the non perturbative regime of
QCD.

Instrumentation for heavy-ion experiments: granularity

- In order to cope with the high density of particles, heavy-ion detectors have to be very granular (e.g. large TPC with small read-out pads).
- Track seeding typically in outer detectors (where track density is lower) and then Kalman filter propagation to the primary vertex.

Short reminder: (Pseudo-)rapidity

$$\frac{dN}{d\eta} = \sqrt{1 - \frac{m^2}{m_T^2 \cosh^2 y}} \frac{dN}{dy}$$

→ Always keep in mind: Rapidity and pseudo-rapidity are not the same, especially at low transverse momenta!

From: K. Reygers

Total number of charged hadrons in Pb-Pb collisions

 → Collisions of heavy-ions at high energy accelerators allow the creation of several tens of thousands of hadrons (1 << N << 1mol) in local thermodynamic equilibrium in the laboratory.

> So, we have enough particles, but are they in local thermodynamic equilibrium? How can we test that?

[Phys.Lett. B772 (2017) 567-577]

Total number of charged hadrons in Pb-Pb collisions

→ Collisions of heavy-ions at high energy accelerators allow the creation of several tens of thousands of hadrons (1 << N << 1mol) in local thermodynamic equilibrium in the laboratory.

Success of **hydro models** describing **spectral shapes and azimuthal anisotropies** supports idea of matter in local thermal equilibrium (*kinetic*).

Success of thermal models describing yields of hadrons composed of up, down, and strange quarks supports idea of matter in local thermal equilibrium (*chemical*).

ALI-PUB-115091

[Phys.Lett. B772 (2017) 567-577]

Equilibrium models such as hydro typically need 5-6 interactions to work. Where does this picture break down? Does it work in pp and pPb? \rightarrow What is the smallest possible QGP droplet?

A short introduction to statistical thermodynamics (1)

- The maximum entropy principle leads to the thermal most likely distribution of particle species.
- Entropy: the number of possible microstates Ω being compatible with a macrostate for a given set of macroscopic variables (E, V, N):

 $\mathbf{S} = k_B \cdot \ln \Omega$

• Compatibility to a given macroscopic state can be realized exactly or only in the statistical mean.

L. Boltzmann

A short introduction to statistical thermodynamics (3)

- A small example: barometric formula (density of the atmosphere at a fixed temperature as a function of the altitude *h*).
- Probability to find a particle on a given energy level *j*:

$$P_{j} = \frac{\exp\left(-\frac{E_{j}}{k_{B}T}\right)}{Z} \xrightarrow{\text{Partition function } Z} \frac{\operatorname{Boltzmann factor}}{Z \operatorname{Custandssumme} = "sum over states"}$$

• Energy on a given level is simply the potential energy: $E_{pot} = mgh$. This implies for the density n (pressure p):

$$\frac{p(h_1)}{p(h_0)} = \frac{n(h_1)}{n(h_0)} = \frac{N \cdot P(h_1)}{N \cdot P(h_0)} = \exp\left(-\frac{\Delta E_{pot}}{k_B T}\right) = \exp\left(-\frac{mg}{RT}\Delta h\right)$$

QGP thermodynamics and soft probes Particle chemistry

Statistical-thermal model for heavy-ion collisions

• Starting point: grand-canonical partition function for an *relativistic ideal* quantum gas of hadrons of particle type i (i = pion, proton,... \rightarrow full PDG!):

Only two free parameters are needed: (T,μ_B) . Volume cancels if particle ratios n_i/n_j are calculated. If yields are fitted, it acts as the third free parameter.

• Once the partition function is known, we can calculate all other thermodynamic quantities: $1 \partial (T \ln Z) = \frac{\partial (T \ln Z)}{\partial T \ln Z} = 1 \partial (T \ln Z)$

$$n = \frac{1}{V} \frac{\partial (T \ln Z)}{\partial \mu} \left| P = \frac{\partial (T \ln Z)}{\partial V} \right| s = \frac{1}{V} \frac{\partial (T \ln Z)}{\partial T}$$

Partition function shown here is only valid in the resonance gas limit (HRG), i.e. relevant interactions are mediated via resonances, and thus the non-interacting hadron resonance gas can be used as a good approximation for an interacting hadron gas.

p_{T} spectra of identified particles

- Identify particle in the detector (pion, kaon, proton, Lambda, Xi, Omega, anti-deuteron...)
- 2. Fill p_{T} -spectrum
- 3. Interpolate unmeasured region at low $p_{\rm T}$ (at high $p_{\rm T}$ negligible)
- 4. Integrate:

$$\frac{dN}{dy} = \int \frac{d^3N}{dp_{\rm T} dy d\varphi} d\varphi dp_{\rm T}$$

Instrumentation for heavy-ion experiments: PID

Chemical equilibrium at the LHC (1)

Production yields of light flavour hadrons from a chemically equilibrated fireball can be calculated by statistical-thermal models (roughly $dN/dy \sim exp\{-m/T_{ch}\}$, in detail derived from partition function)

→ In Pb-Pb collisions, particle yields of light flavor hadrons are described over 7 orders of magnitude with a **common** chemical freezeout temperature of $T_{ch} \approx 156$ MeV.

→ This includes **strange hadrons** which are rarer than u,d quarks. Approx. every fourth to fifth quark (every tenth) is a strange quark in Pb-Pb collisions (in pp collisions).

→ Light (anti-)nuclei are also well described despite their low binding energy ($E_{\rm b} << T_{\rm ch}$).

Chemical equilibrium at the LHC (2) $\frac{p+p}{2}$ $\frac{\overline{\Omega} + \overline{\Omega}^+}{2}$ <u>K*+</u>K* 2 K⁺+K $\frac{\pi^+ + \pi^-}{2}$ d ø Λ dN/dy 10³ **ALICE Preliminary** Pb-Pb \sqrt{s}_{NN} = 2.76 TeV, 0-10% 10^{2} 10 ♣ Not in fit 10^{-1} Extrapolated χ^2 /NDF Model T (MeV) 10^{-2} - THERMUS 2.3 155 ± 2 24.5/9 10^{-3} GSI-Heidelberg 156 ± 2 18.4/9 • · · SHARE 3 156 ± 3 15.1/9 10^{-4} BR = 25%(mod.-data)/mod 0.5 ¢¢¢ 0 n 🗘 🗘 0 ₀ 0 444 -0.5 mod.-data)/σ_{data} . . .

Particle yields of light flavor hadrons are described over 7 orders of magnitude within 20% (except K*0) with a common chemical freeze-out temperature of Tch ≈ 156 MeV (prediction from RHIC extrapolation was ≈ 164 MeV).

Hadrons are produced in apparent chemical equilibrium in Pb-Pb collisions at LHC energies.

Largest deviations observed for protons (incomplete hadron spectrum, baryon annihilation in hadronic phase,..?) and for K*0.

Three different versions of thermal model implementations give similar results.

[Wheaton et al, Comput.Phys.Commun, 18084] [Petran et al, arXiv:1310.5108] [Andronic et al, PLB 673 142]

ALI-PREL-94600

0

-2

Sequential freeze-out?

- Are the deviations observed in the thermal model fit for p and Ξ due to physics?
- Two main ideas on the market:

(1.) Different chemical freeze-out temperatures for s w.r.t. to u,d quarks. \rightarrow motivated by LQCD

(2.) Inelastic collisions in the hadronic phase.

 \rightarrow Was this previously overlooked, because the difference is "only" about 10 MeV? Interesting research topic for the next years.

C. Ratti et al., PRD 85, 014004 (2012)

6

Chemical equilibrium vs collision energy (1)

- Hadron yields from SIS up to RHIC and LHC can be described in a hadrochemical model applying thermal fits.
- Effective parameterization of (T, $\mu_{\rm B}$) as a function of collision energy:

$$T[\text{MeV}] = T_{lim} \left(1 - \frac{1}{0.7 + (\exp(\sqrt{s_{NN}}(\text{GeV})) - 2.9)/1.5} \right)$$
$$\mu_b[\text{MeV}] = \frac{a}{1 + b\sqrt{s_{NN}}(\text{GeV})},$$

- Particle ratios can be calculated (or predicted) at any collision energy....
- → One observes a limiting temperature of hadron production around T ≈ 160MeV!

Chemical equilibrium vs collision energy (2)

- Hadron yields from SIS up to RHIC and LHC can be described in a hadrochemical model applying thermal fits.
- Effective parameterization of (T, $\mu_{\rm B}$) as a function of collision energy:

$$T[\text{MeV}] = T_{lim} \left(1 - \frac{1}{0.7 + (\exp(\sqrt{s_{NN}}(\text{GeV})) - 2.9)/1} \right)$$
$$\mu_b[\text{MeV}] = \frac{a}{1 + b\sqrt{s_{NN}}(\text{GeV})},$$

• Particle ratios can be calculated (or predicted) at any collision energy....

→ One observes a limiting temperature of hadron production around $T \approx 160 MeV!$

[PRD 90 094503 (2014)]

Chemical equilibrium vs collision energy

- Hadron yields from SIS up to RHIC and LHC can be described in a hadrochemical model applying thermal fits.
- Effective parameterization of (T, μ_B) as a function of collision energy:

$$T[\text{MeV}] = T_{lim} \left(1 - \frac{1}{0.7 + (\exp(\sqrt{s_{NN}}(\text{GeV})) - 2.9)/1.5} \right)$$

 $\mu_b[\text{MeV}] = \frac{a}{1 + b\sqrt{s_{NN}}(\text{GeV})},$

• Particle ratios can be calculated (or predicted) at any collision energy....

Chemical freeze-out line

- By colliding nuclei with different center of mass energies, different regions of the phase diagram are explored.
- Thermal model fits to the experimental data define the chemical freeze-out line in the QCD phase diagram.
- The previously schematic phase diagram becomes one which is actually measured!

Chemical freeze-out line

- By colliding nuclei with different center of mass energies, different regions of the phase diagram are explored.
- Thermal model fits to the experimental data define the chemical freeze-out line in the QCD phase diagram.
- The previously schematic phase diagram becomes one which is actually measured!

Y.B. Ivanov et al., Phys. Rev. C 73 (2006) 30.

Chemical freeze-out line

- By colliding nuclei with different center of mass energies, different regions of the phase diagram are explored.
- Thermal model fits to the experimental data define the chemical freeze-out line in the QCD phase diagram.
- The previously schematic phase diagram becomes one which is actually measured!

[Nature 561 (2018) no.7723, 321-330]

Recap: temperatures in heavy-ion collisions (1)

Recap: temperatures in heavy-ion collisions (2)

Recap: temperatures in heavy-ion collisions (3)

Recap: temperatures in heavy-ion collisions (4)

→ Systematic measurements of light flavor hadrons demonstrate that chemical freeze-out (hadronization) temperature saturates at:

 $T_{ch} \approx 156 \text{ MeV} \pm 3 \text{ MeV}$ ($\triangleq 1.8 \cdot 10^{12} \text{ K}$)

 \rightarrow In agreement with first principle Lattice QCD calculations

[Nature 561 (2018) no.7723, 321-330] [ALICE, Nucl. Phys. A 971 (2018) 1-20]

END OF LECTURE 1..

QGP thermodynamics and soft probes Search for QCD critical point and onset of de-confinement
The QCD critical point

By a variation of beam energies, one might hit the critical point in the QCD phase diagram => critical chiral dynamics.

Critical fluctuations – in ordinary matter

- Phase transitions are often connected to critical phenomena.
- Example: Opalescence of Ethene at the critical point (divergence of correlation lengths).

[S. Horstmann, Ph.D. Thesis University Oldenburg]

Fluctuations in QCD

 QCD phase transitions: the thermodynamic susceptibilities χ of the conserved quantities of QCD (electric charge Q, baryon number B, Strangeness S) correspond to (event-byevent) fluctuations in the particle production.

$$\chi_{lmn}^{BSQ} = \frac{\partial^{l+m+n} (P/T^4)}{\partial (\mu_B/T)^l \, \partial (\mu_S/T)^m \, \partial (\mu_S/T)^n}$$

• Fluctuations are quantified as moments (mean, variance, skewness, kurtosis) or cumulants *K* of the event-by-event distributions:

$$M = K_{1} = \mu = \langle N \rangle = VT^{3} \cdot \chi_{1}$$

$$\sigma^{2} = K_{2} = \mu_{2} = \langle (\delta N)^{2} \rangle = VT^{3} \cdot \chi_{2}$$

$$S = K_{3}/\sigma^{3} = \mu_{3}/\sigma^{3} = \langle (\delta N)^{3} \rangle / \sigma^{3} = VT^{3} \cdot \chi_{3}/(VT^{3} \cdot \chi_{2})^{3/2}$$

$$\kappa = K_{4}/\sigma^{4} = (\mu_{4} - 3\mu_{2}^{2})/\mu_{2}^{2} = \langle (\delta N)^{4} \rangle / \sigma^{4} - 3 = (VT^{3} \cdot \chi_{4})/(VT^{3} \cdot \chi_{2})^{2}$$

$$\mu_i = \langle (\delta N)^i \rangle$$
$$\delta N = N - \langle N \rangle$$

Critical fluctuations – in quark matter

- In the QCD case, event-by-event fluctuations in the conserved charges of QCD (Baryon number *B*, Strangeness *S*, electric charge *Q*).
- Key observable: baryon number fluctuations quantified as the higher moments χ_B of the net-proton (N_p-N_{anti-p}) distribution => fixed at chemical freeze-out
 → Hint for deviation from Poisson baseline in kurtosis around √s_{NN} ≈ 20 GeV?

76

QGP thermodynamics and soft probes Radial and elliptic flow

Bulk particle production and collectivity

- Low p_T hadrons composed of (u,d,s) valence quarks define the collective behaviour of the fireball.
- "Baseline model of ultra-relativistic heavy-ion physics"

A fireball in local thermodynamic equilibrium:

- •particle chemistry in agreement with thermal model predictions
- •*p*T-spectra and *v*² measurements show patterns of radial and elliptic hydrodynamic flow.

N.B.: Collective flow has nothing to do with the particle flow method to reconstruct tracks and jets in ATLAS/CMS

Flow in AA collisions

- Flow picture: Collective motion of particles superimposed to the thermal motion.
- Radial flow is a natural consequence of any interacting system expanding into the vacuum.

Radial flow

Common radial hydrodynamic expansion leads to a modification of the spectral shape: mass dependent *boost*.

- $\rightarrow p_{T}$ spectra harden with centrality.
- → More pronounced for heavier particles(e.g.: $p > K > \pi$) as velocities become equalized in the flow field (p = $\beta \gamma \cdot m$).
- → Hydrodynamic models show a good agreement with the data.
- → Kinetic freeze-out temperature from Blast-Wave model: ~90 MeV

Relativistic Hydrodynamics

- General framework of relativistic hydrodynamics was first developed by Landau and is textbook knowledge since then.
- Only requirement for applicability: local thermodynamic equilibrium.
- Perfect fluid: no dissipation
 - Conservation of energy and momentum: $\partial_{\mu}T^{\mu\nu} = 0$
 - Conservation of baryon number current: \rightarrow gives five independent equations $\partial_{\mu}j_{B}^{\mu}(x) = 0$
- Six thermodynamic variables: the energy density $\varepsilon(x)$, the momentum density P(x), the baryon number density $n_B(x)$, and the fluid velocity v(x).
- Equation-of-state: functional relation of ε , *P*, and n_B (taken from Lattice QCD).
- In reality: dissipative corrections play an important role:

 → shear viscosity η and bulk viscosity ζ (so called *transport* coefficiencts)enter in correction terms on the right hand side of the equations above.

Lew Landau (1908-1986)

Elliptic flow v₂

- Not only the observed particle spectrum in p_T, but also in φ is the result of the fireball expansion.
- If the system is asymmetric in spatial coordinates, scattering converts it to anisotropy in momentum space:

$$E\frac{d^{3}N}{d^{3}p} = \frac{d^{2}N}{2\pi p_{\rm T}dp_{\rm T}dy} \left\{ 1 + 2\sum_{n=1}^{\infty} v_n(p_{\rm T})\cos[n(\varphi - \psi_n)] \right\}$$

Radial flow v_1 – direct flow, v_2 - elliptic flow

 If nuclei overlap was a smooth almond shape, odd harmonics (v₃,..) would be zero.

Centrality dependence of v_2

- v₂ exhibits a strong centrality dependence
- v₂ largest for 40-50%
- Spatial anisotropy very small in central collisions
- Largest anisotropy in mid-central collisions
- Small overlap region in peripheral collisions

Mass ordering of v_2 vs. transverse momentum

Transverse momentum dependence of elliptic flow shows the same mass ordering ($p = \beta \gamma \cdot m$) as radial flow and as expected from hydrodynamics. \rightarrow interplay of radial and elliptic flow.

Sensitivity of v_2 to shear viscosity

[Phys.Rev.Lett. 106 (2011) 192301]

- The larger the shear viscosity per entropy density ratio η/s of the QGP, the more v₂ is reduced.
- Dissipative losses hamper the buildup of flow => measuring the magnitude of v_2 and comparing it to models, we can determine how *ideal* the QGP liquid is.

Ideal fluids (1)

→ Why are ideal fluids (η /s very small) fascinating? Look at superfluid Helium as an example: <u>https://www.youtube.com/watch?v=2Z6UJbwxBZI</u>

Ideal fluids (2)

→ Why are ideal fluids (η /s very small) fascinating? Look at superfluid Helium as an example: <u>https://www.youtube.com/watch?v=2Z6UJbwxBZI</u>

END OF LECTURE 2..

Hard scatterings and jets

Jet-medium interactions (1)

Peripheral Pb-Pb

[PRL105:252303,2010]

Central Pb-Pb

Jet-medium interactions (2)

One jet disappears (or loses a substantial amount of its energy) in the QGP
 → "jet quenching"

→ N.B.: To stop a highly energetic jet (e.g. 100 GeV), it needs a 10fm droplet of QGP or ~1.5m of hadronic calorimeter.

Dijet asymmetry

- How often do jets lose a large amount of energy?
 → quantified by the dijet asymmetry
- Two highest energy jets with $\Delta \phi > 2\pi/3$:

$$A_{J} = \frac{|p_{T1} - p_{T2}|}{p_{T1} + p_{T2}} \qquad \xrightarrow{\mathbf{p_{T1}} = \mathbf{p_{T2}} \rightarrow \mathbf{A_{J}} = \mathbf{0}} \\ \underbrace{\mathbf{p_{T1}} = \mathbf{p_{T2}} \rightarrow \mathbf{A_{J}} = \mathbf{0.5}}_{\mathbf{1/3} \mathbf{p_{T1}} = \mathbf{p_{T2}} \rightarrow \mathbf{A_{J}} = \mathbf{0.5}}$$

- Peripheral collisions: distribution as in Pythia (as in pp)
- Central collisions:
 - Symmetric configuration is significantly depleted
 - Enhancement of asymmetric configurations

Nuclear modification factor R_{AA}

- Hard process occur in *initial* nucleon-nucleon (NN) collisions. The momentum transfers in the later evolution of the system are smaller.
- Heavy-ion collision: many NN collisions
- Without *nuclear effects* (interaction with the QCD medium), a heavy-ion collision would just be a superposition of independent NN collisions with incoherent fragmentation.
- The number of independent NN collisions $< N_{coll} >$ can be calculated for a given impact parameter/centrality in the Glauber model.

Spectrum in AA
collisions

$$R_{AA} = \frac{dN_{AA} / dp_T}{\langle N_{coll} \rangle dN_{pp} / dp_T}$$
Pb
Pb
Spectrum in pp
collisions

$$R_{AA} = 1 \rightarrow \text{no modification}$$

$$R_{AA} = 1 \rightarrow \text{medium effects}$$

The most simple example: R_{pA}

 In a pA collision, the proton hits on average 6.9 nucleons of the Pb nucleus:

$$\rightarrow < N_{coll} > = 6.9 + - 0.6$$

- We distinguish number of collisions N_{coll} and number of participants N_{part}:
 - A nucleon can *collide* several times with nucleons of the target nucleus (Glauber assumes that it stays intact after each collision).
 - Each nucleon with experiences at least one collision, is called a participant (N_{part}).
 => N_{part} = N_{coll} + 1 in pPb

The most simple example: R_{pA}

 In a pA collision, the proton hits on average 6.9 nucleons of the Pb nucleus:

$$\rightarrow < N_{\rm coll} > = 6.9 + - 0.6$$

- We distinguish number of collisions N_{coll} and number of participants N_{part}:
 - A nucleon can *collide* several times with nucleons of the target nucleus (Glauber assumes that it stays intact after each collision).
 - Each nucleon with experiences at least one collision, is called a participant (N_{part}).
 => N_{part} = N_{coll} + 1 in pPb

How to determine N_{coll} and N_{part}?

- "Billard ball" Monte-Carlo, named after Roy Glauber, but orginally introduced to heavyion physics by Bialas, Blezynski, and Czyz (Nucl. Phys. B111(1976)461).
- Assumptions:
 - Nucleons travel on straight lines
 - Collisions do not alter their trajectory (nor anything else, they remain intact) assuming their energy is large enough
 - No quantum-mechanical interference
 - Interaction probability for two nucleons is given by the nucleon-nucleon (pp) cross-section.
- Strong dependence on *impact parameter b*

before collision spectators participants after collision

http://cerncourier.com/cws/article/cern/53089

Glauber Monte-Carlo

Input to Glauber MC (1)

- Distributions of nucleons in nuclei:
 - well measured by electron-ion scattering experiments
 - Paramterised as Woods-Saxon disitrubtion

- Nucleon-nucleon cross-section
 - Measured in pp collisions or from extrapolations

Input to Glauber MC (2)

- Distributions of nucleons in nuclei:
 - well measured by electron-ion scattering experiments
 - Paramterised as Woods-Saxon disitrubtion

 Measured in pp collisions or from extrapolations

Glauber MC output

Typical values:

- 10% most central collisions at RHIC (Au-Au, 200 GeV)
 - $N_{coll} \sim 1200$
 - *N*_{part} ~380
- 5% most central collisions at LHC (Pb-Pb 2.76 TeV)
 - $N_{coll} \sim 1680$
 - N_{part} ~382
- Difference mainly from crosssection increase and slightly larger nucleus

Centrality and Glauber model

- Multiplicity is inversely proportional to the impact parameter
 => Knowing the multiplicity of the event, we roughly know the impact parameter (and thus also N_{coll} and N_{part}). We *fit* the multiplicity distribution with the Glauber model (see next slide).
- Multiplicity is strongly correlated in different phase space regions in heavyion collisions (e.g. forward and midrapditity).

Does the Glauber model work?

- \rightarrow Yes, we can test it with electroweak control probes.
- \rightarrow No medium modification observed (despite multiplying by $N_{coll} \sim 1680!$).

 R_{AA}

R_{AA} for charged hadrons (1)

 N_{coll} scaling works well above *p*_T > 4 GeV/*c* for electroweak probes and also in pPb. => There are no *cold nuclear matter*

effects and N_{coll} -scaling is a reasonable assumption for AA.

 There is a significant suppression of high p_T-particles observed in AA collisions which is a true medium effect.

=> High $p_{\rm T}$ particle production in AA collision is not a simple superposition of incoherent nucleon-nucleon collisions.

How does the medium achieve this suppression?

R_{AA} for charged hadrons (2)

→ No high p_T particle suppression at SPS energies. → All LHC experiments in agreement.

Energy loss in the QGP

- The QGP is a high density source of color sources (quarks and gluons) which are felt by the traversing quark or gluon.
- It experiences
 - Collisional energy loss: elastic scatterings, dominant at low momentum
 - Radiative energy loss: inelastic scatterings, gluon bremsstrahlung, dominates at high momentum
- Total energy loss is a sum of the two processes.

Radiative energy loss

- BDPMS formalism
 - Baier, Dokshitzer, Mueller, Peigne, Schiff
 - Infinite energy limit
 - Static medium

$$\Delta E \propto \alpha_S \cdot C_R \cdot \hat{q} \cdot L^2$$

- Energy loss proportional to:
 - Path length through medium squared
 - Casimir factor
 - CR = 4/3 (quarks)
 - CR = 3 (gluons)
 - Medium properties are encoded in the parameter "q-hat" which corresponds to the average squared transverse momentum transfer per mean free path.

→ For the characterization of the QGP medium, q-hat has a similar significance as e.g. the shear viscosity.

$$\hat{q} = \frac{\left\langle q_T^2 \right\rangle}{\lambda} - \text{average momentum transfer}$$

$$\hat{q} = \frac{\left\langle q_T^2 \right\rangle}{\lambda} - \text{mean free path}$$

Determination of q-hat

- From the theory side, the JET collaboration extracted q-hat using combined CMS and ALICE LHC R_{AA} data assuming no fluctuations of initial conditions and coupling the same hydro to all energy loss models.
- 5 different models with different approaches:
 - higher twist (HT-BW, HT-M)
 - hard thermal loop (MARTINI, McGill-AMY)
 - opacity expansion (GLV-CUJET)

For comparison: in cold nuclear matter $q = 0.02 \text{ GeV}^2/\text{fm}$ (at $t_0 = 0.6 \text{ fm}$)
Quarkonia and heavy flavour

Heavy flavor (1)

- Heavy quark flavors (*c*,*b*) are dominantly produced in initial hard scatterings • (calculable in pQCD) and then interact with the medium.
- There is strong evidence that **charm quarks** *thermalize* in the medium. ullet
 - (A.) Elliptic flow of D mesons:

CMS-PAS-HIN-16-007

(B.) Baryon-to-meson enhancement seen in $\Lambda_{\rm C}$:

Heavy flavor (2)

- Heavy quark flavors (*c*,*b*) are dominantly produced in initial hard scatterings (calculable in pQCD) and then interact with the medium.
- There is strong evidence that **charm quarks** *thermalize* in the medium.
- N.B.: electroweak probes do not show any interaction with the medium.

[PRL 110, 022301 (2013)]

J/ψ recombination

→ As $c\bar{c}$ bound state, the J/ ψ is expected not to be bound in the QGP phase (*Matsui/Satz*, 1986), but it can regenerate at the phase boundary.

→ 5.02 TeV Pb-Pb data strongly confirms J/ψ recombination picture:

- $R_{AA}(LHC) > R_{AA}(RHIC)$
- R_{AA} midrapidity > R_{AA} forward rap.

→ Signature of de-confinement.

[P. Braun-Munzinger, J. Stachel, Nature doi:10.1038/nature06080]

Suppression of Upsilon states

[PRL 109 (2012) 222301]

Suppression of Y(1S) ground, and excited Y(2S) and Y(3S) states. Ordering of R(3S)<R(2S)<R(1S) consistent with sequential melting

Towards the future: multi-charm and ultra-thin MAPS

Summary

Further reading

- Lectures
 - J. Stachel, K. Reygers (2011) http://www.physi.uni-heidelberg.de/~reygers/lectures/2011/qgp/qgp_lecture_ss2011.html
 - P. Braun-Munzinger, A. Andronic, T. Galatyuk (2012) http://web-docs.gsi.de/~andronic/intro_rhic2012/
 - Quark Matter Student Day (2014) https://indico.cern.ch/event/219436/timetable/#20140518.detailed

Books

- C.Y. Wong, Introduction to High-Energy Heavy-Ion Collisions, World Scientific, 1994 http://books.google.de/books?id=Fnxvrdj2NOQC&printsec=frontcover
- L. P. Csernai, Introduction to Relativistic Heavy-Ion Collisions, 1994 (free as pdf) http://www.csernai.no/Csernai-textbook.pdf
- E. Shuryak, The QCD vacuum, hadrons, and superdensematter, World Scientific, 2004 http://books.google.de/books?id=rbcQMK6a6ekC&printsec=frontcover
- Yagi, Hatsuda, Miake, Quark-Gluon Plasma, Cambridge University Press, 2005 http://books.google.de/books?id=C2bpxwUXJngC&printsec=frontcover
- R. Vogt, UltrarelativisticHeavy-ion Collisions, Elsevier, 2007 http://books.google.de/books?id=F1P8WMESgkMC&printsec=frontcover
- W. Florkowski, Phenomenology of Ultra-Relativistic Heavy-Ion Collisions, World Scientific, 2010 http://books.google.de/books?id=4gIp05n9lz4C&printsec=frontcover

BONUS SLIDES (IF TIME ALLOWS...)

QGP thermodynamics and soft probes (anti-)(hyper-)nuclei

Particle identification via dE/dx

$$\left\langle -\frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2}\ln\frac{2m_e c^2 \beta^2 \gamma^2 W_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2}\right]$$

Separation of z = 1 and z = 2 via dE/dx is also very important for the correct determination of the momentum via the track curvature: $p_T \sim 0.3 \text{ B} \cdot \text{r} \cdot z$

Measurements of (anti-)(hyper-)nuclei

Collisions at the LHC produce a large amount of (anti-)(hyper-)nuclei.

- Matter and anti-matter are produced in equal abundance at LHC energies.
- Open puzzle: production yields are in agreement with thermal model prediction even though light (anti-)nuclei should be dissolved in such a hot medium.

Table of nuclides

Light (anti-)nuclei

- Even in Pb-Pb collisions at LHC energies, light anti-nuclei are rarely produced.
- (Anti-)nuclei up to the (anti-)alpha are in reach (1st observation of the anti-alpha by the STAR experiment at RHIC in 2011).

→ A very good and very stable particle identification is needed to separate these rare particles from the background.

Testing CPT with anti-nuclei

[Nature Physics 11 (2015) 811-814]

The ALICE collaboration performed a test of the CPT invariance looking at the mass difference between nuclei and anti-nuclei.

This test shows that the masses of nuclei and anti-nuclei are compatible within the uncertainties. The binding energies are compatible in nuclei and antinuclei as well.

Mass ordering

→ For each additional nucleon the production yield decreases by a factor of about 300!

→ Such a behaviour can be directly derived from the thermal model which predicts in first order $dN/dy \sim exp(-m/T)$

Hyper-nuclei (1)

- By 'replacing' one nucleon by one hyperon, the table of nuclides can be extended in a third dimension.
- Hyper-nuclei have a long tradition in nuclear physics: discovery in the 1950s by M. Danysz and J. Pniewski in a nuclear emulsion exposed to cosmic rays.

Hyper-nuclei (2)

 Reconstruction of hyper-nuclei can be based on well established techniques for Λ and other weakly decaying light flavor hadrons as lifetimes and decay topologies are similar.

$$\Lambda \longrightarrow p + \pi^{-} (63.9\%)$$

• Experimentally one searches for (anti-)nuclei from displaced vertices:

$${}^{3}_{\Lambda}H \longrightarrow {}^{3}He + \pi^{-}$$

$${}^{3}_{\Lambda}H \longrightarrow d + p + \pi^{-}$$

$${}^{4}_{\Lambda}H \longrightarrow {}^{4}He + \pi^{-}$$

$${}^{4}_{\Lambda}He \longrightarrow {}^{3}He + p + \pi^{-}$$

$${}^{5}_{\Lambda}He \longrightarrow {}^{4}He + p + \pi^{-}$$

• Branching ratios are only partially constrained by measurements.

(anti-)(hyper-)nuclei – impact beyond heavy-ion physics

- A. Heavy-ion measurements may help in constraining the not well known lifetime of the hyper-triton (sensitive to the hyperon-nucleon interaction potential in nuclear physics).
- B. Collider measurements are used for background estimations in the searches for (anti-) nuclei of galactic/dark matter origin (such as in AMS).

Impact on AMS searches

 \rightarrow AMS (and other experiments) search for anti-nuclei in space which are either of primordial origin or from annihilations of dark matter particles.

(anti-)nuclei measurements in the press

yahoo! news	Search					Search				
News Home	National	Coronavirus	Yahoo Originals	Fake News	World	Finance	Cricket	Lifestyle	Sports	•••
Fresh antimatter study will help search for dark matter			Washington DC [USA], May 29 (ANI): The ALICE collaboration has presented new results on the production rates of antideuterons based on data collected at the highest collision energy delivered so far at the Large Hadron Collider.							
			The antideuteron is composed of an antiproton and an antineutron. The new measurements are important because the presence of antideuterons in space is a promising indirect signature of dark matter candidates. The results mark a step forward in							
ANI 29 May 2020			the search for da	ark matter.						

In the future, these types of studies at ALICE could be extended to heavier antinuclei. "The LHC and the ALICE experiment represent a unique facility to study antimatter nuclei," said ALICE Spokesperson Luciano Musa.

Search for dark matter in space

- Experiments like GAPS and AMS search for anti-nuclei in space as they could be remnants of dark matter annihilation or even primordial remnants.
- But what is the mean free path of anti-nuclei in the universe? In other words, how deep can these experiments look into the galaxy?
 - We need to know the density of the universe
 - We need to know the composition
 - And we need to know the cross-section (our measurement)

[Drawing and formulas taken from A. Caliva]

[Taken from Laura Serskynte]

Measuring the unknown hadronic absorption of antinuclei

- 1. Particle identification for (anti-)³He is essentially perfect (no contamination) for both TPC and TOF.
- 2. Count number of (anti-)³He particles in the TPC and then count how many arrive in the TOF.
- 3. Particles are not matched to a TOF track due to either
 - 1. Dead TOF module
 - 2. Large-angle elastic electromagnetic scattering
 - 3. Inelastic hadronic interaction
 - 4. Large-angle elastic hadronic scattering

Hadronic cross-section of anti-deuterons (1) [ALICE, 2005.11122]

 \rightarrow Very rough estimate of mean free path:

 $\lambda = \frac{1}{n \cdot \sigma} \qquad \lambda \approx \frac{1}{\frac{1}{cm^{-3}} \cdot 6 \cdot 10^{-24} cm^2} \approx 1.7 \cdot 10^{21} m \approx \underline{180000 ly}$ Cross section from ALICE measurement

Number density of hydrogen and He atoms in universe

Hadronic cross-section of anti-deuterons (2) [ALICE, 2005.11122]

 \rightarrow Very rough estimate of mean free path:

$$\lambda = \frac{1}{n \cdot \sigma} \qquad \lambda \approx \frac{1}{\frac{1}{cm^{-3}} \cdot 6 \cdot 10^{-24} cm^2} \approx 1.7 \cdot 10^{21} m \approx \underline{180000 ly}$$
Cross section from ALICE measurement

Number density of hydrogen and He atoms in universe