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Astroparticle Physics

e Part| — Brief overview
— Origins, History, Introduction
— The universe at ultra-high energies
- Experiments: cosmic rays, neutrinos, gamma rays
— Multi messenger astronomy

e Part Il — Cosmic rays and LHC
- Ultra-high energy interactions
- Extensive air showers
- LHC forward physics, QCD



Origins: cosmic rays

1911-1912: Hess performs a series of ballon flights,
systematic measurements with improved setup
(insulation against pressure and temperature changes)

- finds that radiation level decreases slowly
up to = 700 m in altitude,
then increases considerably with height

“The results of the present observations
seem to be most readily explained by the assumption
that a radiation of very high penetrating power
enters our atmosphere from above.
Since | found a reduction
neither by night nor at a solar eclipse,
one can hardly consider the Sun as the origin.”

— Nobel Prize 1936
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Charged particles from space

Cosmic rays initially believed to be gamma rays
because of their penetrating power

1927: Clay shows dependence on latitude
cosmic rays are affected by Earth magnetic field
- must be charged particles

1931-33: Compton organizes global study
- confirms Clay’s findings
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High energy and secondary cascades

1928: Geiger-Miiller counter | :
— fast response to individual particles U U
— possibility to form coincidences ! 4
1932: Rossi shows that (at sea level) : T,
— 50 % of the radiation penetrates 1 m of lead % % T

- highest energies must exceed 14 GeV

Rossi also demonstrates production of ¥
- ? =
secondary particles T ,,,///7/
T
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Fig. 4-:3 Triangular array of G-M

a // // counters used in the first experiment
demonstrating the production of sec-

/ ondary particles by cosmic rays. At least

/ two charged particles emerging simulta-

neously from the lead are neoded to

produce a coincidence. One of them

S

ik

,/////%
x ///// =

\\3‘
AR

N

N

&\\

may be a primary particle, but the other

st have beeu produced ju the lead. (It
the upper section of the lead shielding is
%// / removed, the coincidence rate falls

nearly to zero.)
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Cosmic rays are positively charged

1932: Johnson and Alvarez & Compton
demonstrate east-west asymmetry
(confirmed by Rossi in 1934)

- Cosmic rays are positively charged (@) w ®) w
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Huge energies and extensions

1938/1939: Kohlhdrster and Auger 2 . .
observe coincidences between detectors T ..
that are up to 300 m apart

Rate per hour
o
L

- Cosmic rays cause extented air showers .
- * Auger 1939

Kolhérster 1938
Schmeiser 1938

107, ., el

107 1 10 102
Distance (m)

1941: experiments by Schein and others
show that primary cosmic rays
are mostly high-energy protons




Secondary particle showers
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Cloud chamber, discovery of anti-matter

Invented by Wilson in 1912
— used in cosmic-ray studies since 1930’s
Vessel filled with supersaturated water vapour
— created by rapid adiabatic expansion

Charged particle creates ionisation clusters
along its trajectory

— act as condensation nuclei
— trail of water droplets

Particle momentum from
curvature of trajectory in magnetic field

Particle energy from density of droplets

—~ Momentum + energy — mass = type of particle discovery of positron 10
(Anderson, 1932)



Discovery of the 2™ generation

1937: muon discovered by Anderson & Neddermeyer
and Street & Stephenson
using triggered Cloud Chambers
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Discovery of the pion / mesons

1947: pion discovered by Lattes and by Occhialini & Powell
using photographic emulsions
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TFig. 1.

Discovery of the kaon

1947: kaon discovered by Rochester & Butler
using cloud chamber

STEREOSCOPIO PHOTOGRAPHS SHOWING AN UNUSUAL FORK (& b) IN THE OAS. THE DIRECTION OF THE MAGNRETIQ FIBLD IS SUCH
THAT A POSITIVE PARTICLE COMING DOWNWARDS I8 DEVIATED IN AN ANTICLOCEWISE DIRECTION
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Cosmic rays VS. colllders

Accelerators provide
controlled environment
- know exactly when
and where collisions happen

Accelerators provide
much higher rates, e.g.

10° pp collisions / sec
at LHC run Il (13 TeV)

= 10 cosmic rays / m? / day
at=10 TeV

Rate extremely important to
— study rare processes
- measure differential
distributions
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LEAP satellite

Proton - satellite

Yakustk - ground array
Haverah Park - ground array
Akeno - ground array
AGASA - ground array

Fly's Eye - air fluorescence

HiRes1 mono - air fluorescence
HiRes2 mono - air fluorescence
HiRes Stereo - air fluorescence
Auger - hybrid

: Knee
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Introduction and current status
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What Is astroparticle physics today?

Three Aspects:
* Learning high-energy physics from astrophysics:

* Neutrino properties, cross sections at ultra high energies, new forms of matter (dark
matter and dark energy), time variation of fundamental constants, space-time structure

* Applying high-energy physics techniques to astrophysics:

« calorimetry and tracking detectors onboard satellites and balloons, ground based
scintillators and Cherenkov detectors, handling of large volume data sets, astronomy
with neutrinos

* Cosmology with input from high-energy physics:
* Big Bang theory, nucleon synthesis, candidates for dark matter
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Tools and Sites

Also an adventure!
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GAIA all-sky visible universe

Basically: thermal black-body radiation and some absorption
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Radio astronomy, all-sky at 408MHz

R R ] s s S
Non-thermal low- ' G b AN as
energy emission. o v

Accelerated
charges.
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All-sky x-ray keV (ROSAT)

. -

Elements of both, thermal (extremely hot) and non-thermal emission.
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All-sky gamma ray >1GeV (Fermi)

Non-thermal, typical decays, particle physics, inverse compton.
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Supernova remnants: Crab nebula
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https://arxiv.org/pdf/1101.2311.pdf

Extragalactic gamma rays
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The universe at the highest energies

Ultra-high energy cosmic rays



Alr shower observatories

Example: event observed with Pierre Auger Observatory

P . . o
Artist impression of air shower \d&\ . & >/ dE
Image credit: Rebecca Pitt, Discovering Particles, CC BY-ND-NC 2.0 ) Ecal = v dX
3 o \dX ). .
. lonization

Direction from particle arrival times v/
Energy from size of ey component ¢

Mass from depth of shower maximum
and size of muonic component

Shower depth and Mass
X Iron depth = proton depth - 100 g cm-2
at same CR energy

-
3

Signal [VEM]
2

Number of muons and Mass
N Iron yield = +40 % of proton yield
K at same CR energy

10?

TR e ez = Experimental accuracies
Direction  0.5-1.5°
Vertical showers Signal = electrons + photons + muons Energy 10-20 %, 14 %,
Inclined showers  Signal = electrons + photons + MUONS X nax 15-25gem?,,, 10gcm?
N, 20 %,,, 11 %,,



around 1958

J
4

Figure 4. The detector used by Galbraith and Jelley for the first
observations of atmospheric-Cherenkov radiation: a dustbin with
a small parabolic mirror and phototube [3].
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Cherenkov radiation

There is a B = 1 By = —% proton in air, Eth~38GeV
threshold: ¢ n 1-— L proton in water, Eth~1.4G2e7V




Pierre Auger Observatory
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Sources of cosmic rays

Hillas plot

Main idea:
accelerators must
confine particles
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Cosmic rays are charged
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50

-50

3D trajectories projected on X-Y plane
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Cosmic rays interact with CMB

* Greisen-Zatsepin-Kuzmin
effect

— s
N

* There is a threshold
energy for the p to
produce a delta resonance

* Eth~O(1010eV)

* Kinematics simple, but don’t forget the CMB
spectrum and various delta resonances

™
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GZK effect on cosmic rays energies
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modification factor

Spectral shape analysis
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Not consistent with mass
composition measurements
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Status quo

UHECR modelling complicated

Sources at least as important than propagation
“mixed composition” basically everywhere

No conclusive situation

Maybe: proton component at highest energies -
astronomy
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The universe at the highest energies

Ultra-high energy neutrinos



Ultra-high energy detection

* Charged current:
- electron, muon, tau udy Ve

* Leptons can emit Cherenkov W
radiation in dense media
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Super Kamiokande

Super-K started data taking in the mid
1990s

40m tall x 40m diameter water tank under a
Japanese mountain

50,000 tons of water
11,200 20" Hamamatsu phototubes

Built as a neutrino observatory e
(atmospheric, solar) |

Muon/electron discrimination via ring
“fuzziness”
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lceCube
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onstruction

50m

1450 m

2450 m
2820 m

IceCube Lab

IceTo|

::_/’ 81 Stations

324 optical sensors

IceCube Array
86 strings including 8 D
5160 optical sensors

Amanda Il Array
(precursor to lceCube)

DeepCore .
B strings-spacing optim
480 optical sensors

Eiffel Tower
324 m




Why neutrino astronomy IS
attractive?

No charge - no deflection
No charge — no absorption, thus, no horizon
No mass (basically) —» speed of light

Neutrino production is sign of non-thermal
processes
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Neutrino spectrum
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lceCube sky-map
HESE (high-energy starting events)

lceCube Preliminary

Galactic

B
0.0 TS = 2In(L/Lo) 126
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Status

Very exciting times
Potential astrophysical neutrinos found

More statistics and better understanding
needed

Neutrinos are best candidates for multi-
messenger measurements
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The universe at the highest energies

High-energy gamma rays



Detection principle
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Imaging Atmospheric Cherenkov
Telescopes — IACTSs

* High angular resolution

* High energy resolution
* Very small field-of-view

* Very limited observation time, exposure
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Alr shower gamma-ray
observatories

* Very dense and low threshold air shower
detectors

e High rate

* High exposure, huge field-of-view

e Limited resolution
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sky map

Full-




Gamma rays
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HESS TeV galactic plane survey




Status

* TeV gamma ray astronomy is a reality
* A wealth of new sources and new morphology
* Concrete data on the high-energy universe
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Multi Messenger

Gravitational waves

y-rays

y-rays

Cosmic rays

Neutrinos

._\\ L A
Pierre Auger Observatory

lceCube



SN1987a in Large Magellan Cloud
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Status

* Extremely exciting

* Huge potential impact on astrophysics,
astroparticle physics

* Need far better statistics: larger and more
sensitive experiments
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