

Ph.D. Research Activities XXXII INTERNATIONAL SEMINAR OF NUCLEAR AND SUBNUCLEAR PHYSICS MARCO SCODEGGIO - PhD STUDENT @INFN FERRARA

BESIII Experiment

BESIII (**BE**ijing **S**pectrometer **III**) is an experiment located on the BEPCII collider line at IHEP (*Institute of High Energy Physics*)

Muon Detector

1T Solenoidal Magnet

EM Calorimeter

Time of Flight Detector

Multi-layer drift chamber

τ-charm factory 2.0 GeV ≤ \sqrt{s} ≤ 4.95 GeV with a design luminosity @ \sqrt{s} = 3.77 GeV of 10³³ cm⁻²s⁻¹

Ph.D. Activities - M. Scodeggio

IN A FEW WORDS...

- My work within the BESIII collaboration focuses primarily on data analysis
- \rightarrow "Inclusive measurements of the $h_c(1 \ P_1)$ in $\psi(2S)$ decays" is **concluded** and is following the BESIII *internal review* process
 - "Search for the Z_c(4430) in Y(4660) decay" is ongoing and at the end of the event selection stage

Inclusive measurements of $h_c(1^1P_1)$ in $\psi(2S)$ decay

Despite its importance in guiding developments of QCD based models, specifically in explaining the $c\bar{c}$ spectrum, the measurements of the h_c(1¹P₁) state are sparse

Despite its importance in guiding developments of QCD based models, specifically in explaining the $c\bar{c}$ spectrum, the measurements of the h_c(1¹P₁) state are sparse

Goal of my analysis was to **measure** the h_c(1¹P₁) features with high precision

> A measurement of branching ratios $(\psi(2S) \rightarrow \pi^0 h_c, h_c \rightarrow \gamma \eta_c)$ is performed

Despite its importance in guiding developments of QCD based models, specifically in explaining the $c\bar{c}$ spectrum, the measurements of the h_c(1¹P₁) state are sparse

Goal of my analysis was to **measure** the h_c(1¹P₁) features with high precision

> A measurement of branching ratios $(\psi(2S) \rightarrow \pi^0 h_c, h_c \rightarrow \gamma \eta_c)$ is performed

Finally, an estimate of the 1P hyperfine splitting $[\Delta_{hyp} = M_{coq}(\chi_{cJ}) - M(h_c)]$ is given

The h_c resonance is reconstructed by looking at the π^0 recoiling mass distribution

Two channels are used to reconstruct the π^{0} a tagged one $(\psi(2S) \rightarrow \pi^{0}h_{c} \rightarrow \pi^{0}\gamma\eta_{c})$ and an inclusive decay $(\psi(2S) \rightarrow \pi^{0}h_{c})$

This analysis is essentially a matter of having an high photon detection efficiency as 3 (2) photons are required for the tagged (inclusive) channel

The h_c resonance is reconstructed by looking at the π^0 recoiling mass distribution

Two channels are used to reconstruct the π^{0} a tagged one $(\psi(2S) \rightarrow \pi^{0}h_{c} \rightarrow \pi^{0}\gamma\eta_{c})$ and an inclusive decay $(\psi(2S) \rightarrow \pi^{0}h_{c})$

This analysis is essentially a matter of having an high photon detection efficiency as 3 (2) photons are required for the tagged (inclusive) channel

The h_c resonance is reconstructed by looking at the π^0 recoiling mass distribution

Two channels are used to reconstruct the π^0 a tagged one $(\psi(2S) \rightarrow \pi^0 h_c \rightarrow \pi^0 \gamma \eta_c)$ and an inclusive decay $(\psi(2S) \rightarrow \pi^0 h_c)$

This analysis is essentially a matter of having an high photon detection efficiency as 3 (2) photons are required for the tagged (inclusive) channel

Variable	Value	PDG Value
${ m M}({ m h}_c)~({ m MeV}/c^2)$	$3525.32\pm0.06\pm0.15$	3525.38 ± 0.11
$\Gamma({ m h}_c)~({ m MeV}/c^2)$	$0.78 \ {}^{+ \ 0.27}_{- \ 0.24} \ \pm \ 0.12$	0.70 ± 0.28
$ m N_{Tag}(h_c)$	$23118 \ ^{+ \ 1500}_{- \ 1398}$	
$\mathcal{B}_1 \times \mathcal{B}_2 \ (10^{-4})$	$4.17 \ ^{+ \ 0.27}_{- \ 0.25} \ \pm \ 0.19$	4.3 ± 0.4
$\mathrm{N}_{\mathrm{Incl}}(\mathrm{h}_{c})$	46187 ± 2123	_
$\mathcal{B}_1~(10^{-4})$	$7.23\pm0.33\pm0.37$	8.6 ± 1.3
$\mathcal{B}_2~(\%)$	57.66 $^{+\ 2.64}_{-\ 2.27}\pm 0.58$	51 ± 6

Search for the Z_c(4430) in Y(4660) decay

XYZ is a family of relatively mysterious states (discovered firstly in 2003) **incompatible** with the quark-antiquark model

XYZ are possible candidates for tetraquarks, meson molecules, glueballs or hybrids

In this analysis I want to investigate a possible connection between the Y and X states (as established in [PRD 102, 012009]) via:

 $e^+e^- \rightarrow Y(4660) \rightarrow Z_c(4430) \pi \rightarrow \psi(2S) \pi \pi \rightarrow J/\psi \pi \pi \pi \pi$

Y(4660), already observed by BaBar [PRD 89, 111103(R)] and BELLE [PRD 91, 112007], was hypothesised to be a baryonium

 $Z_c(4430)$ was observed and studied in the B meson decays in the $\pi\psi(2S)$ invariant mass by BELLE [PRD 88, 074026] (and by LHCb [PRL 112, 222002])

Ongoing analysis, at the event selection stage 6 (5) charged tracks, 2 leptons and 4 (3) π , are required

Signal and Continuum MonteCarlo datasets are under study to understand differences in kinematic distributions

Ph.D. Activities - M. Scodeggio

WELL, IT'S NOT OVER...

Detector oriented service tasks, within the so-called CGEM-IT project for the **BESIII** experiment

Ph.D. Activities - M. Scodeggio

WELL, IT'S NOT OVER...

Detector oriented service tasks, within the so-called CGEM-IT project for the **BESIII** experiment

Ph.D. Activities - M. Scodeggio

WELL, IT'S NOT OVER...

FCC benchmark analysis of a flavour physics channel to define constraint and challenges for the next-gen detectors

Organisation of the INFN dissemination project "What Next? Giovani che raccontano il futuro"

Detector oriented service tasks, within the so-called CGEM-IT project for the **BESIII** experiment

Ph.D. Activities - M. Scodeggio

WELL, IT'S NOT OVER...

FCC benchmark analysis of a flavour physics channel to define constraint and challenges for the next-gen detectors

Many Thanks for Your Attention

Back-up slides

Facebook: @pifeatwork Instagram: pifeatwork TikTok: pifeatwork

Æ

Check it out!!! next.infn.it/iniziativa

Muon Detector

1T Solenoidal Magnet

EM Calorimeter

Time of Flight Detector

Multi-layer drift chamber

Ph.D. Activities - M. Scodeggio

CGEM-IT Project

Up to 10⁴ Hz/cm² $\sigma_{r\phi}$ < 130 µm & σ_z < 1mm $\sigma_{pT}/p_{T} \sim 0.5\% @ 1 \text{ GeV}$ ε > 98% Material budget < 1.5% X₀

Ph.D. Activities - M. Scodeggio

CGEM-IT Project

THE ANALYSIS

Study the decays:

- 1. $B_s^0 \rightarrow D_s^{\pm}K^{\mp}$
- 2. $B_s \rightarrow J/\psi \phi$
- with the final objective (for the *fast-sim*) to estimate $\varphi = \gamma_{CKM} + \gamma_{ds} - 2\beta_s$ and $2\beta_s$

With 75 (310) billions of B_{s}^{0} (B⁰) a statistical precision of 0.4° on γ (3.4° x 10⁻² on β_s) is expected and can be compared with the present measurements...

