

Mario Pelliccioni Istituto Nazionale di Fisica Nucleare - Torino

Physics at LHC

XXXII INTERNATIONAL SEMINAR of NUCLEAR and SUBNUCLEAR PHYSICS "Francesco Romano"

Otranto - June 2021

Today's topics

First class:

- Introduction & general considerations
- SM&BSM Higgs

Second class:

- Closing on the SM: Top, W, Z physics

Third class:

- Flavor physics
- Exotic searches

from the perspective of a an experimentalist working at CMS on Higgs & SM physics!

1954 Yang & Mills: construction of theory for massless particles.
 Particles interact with gauge fields

 1961 Glashow: same origins for EM and Weak interactions, but EM has m=0 propagator and Weak has massive ones

1964 Englert/Higgs/al.: complex scalar doublet with two massless bosons \rightarrow massive spin-1 bosons and a massive scalar

· 1967-68 Weinberg/Salam: gauge theory is spontaneously broken → SM of EWK interactions

1970 't Hooft/Veltman: EWK interaction is renormalizable

Experimental success of the SM

1973 Gargamelle: discovery of neutral current

1983 UA1 and UA2: discovery of W and Z bosons

1989-2000 LEP: SM gets its crown! Precision measurements show uncanny predictive power of theory

- · Couplings (plus very important results like the
- · W/Z mass

(plus very important results like the limit on the number of neutrino families)

Test of non-abelian structure of EWK theory (and QCD!)

'83-'11 Tevatron: top discovery, m_{top} and m_w measurements
 2012 LHC: 7-8 TeV energy, discovery of an Higgs-like particle by CMS and ATLAS

A few experimental considerations

It's all about the transverse plane

Initial state ~ known

Good to account for missing particles!

 p_{τ} is a relativistic invariant

Trigger rates and thresholds

LHC bunch crossing rate: 40 MHz

ATLAS & CMS: Offline rate ~ 1 kHz

Typical "single particle" thresholds @ 13 TeV:

Single Isolated Muon ~ 25 GeV Single Isolated Electron ~ 35 GeV Single Isolated Photon ~ 120 GeV Single Jet threshold ~ 140 GeV Transverse Missing Energy ~ 200 GeV

Importance of multiple objects triggers! A bottleneck for many analyses

LHCb

Offline rate ~ 12 kHz (partly asynchronous)

Single Muon ~ O(GeV) Use of topological triggers with MVAs

Particle isolation

Many processes studied at LHC involve electroweak production mechanisms

These are typically characterized by signatures with limited nearby "activity" (no hadronization)

In hadron collider environment important to characterize these topologies

 \rightarrow isolation!

For example: distinguish muons produced by W/Z decays from those inside jets (B/K decays for example)

Need to account for FSR

Heavily dependent on PU (but corrections can mitigate a lot)

$$\mathcal{I}_{\mu,trk} = rac{\displaystyle\sum_{trk}^{cone} p_{T,trk}}{p_{T,\mu}}$$

Typically used for leptons and photons, but in principle *any* EWK-mediated signature

Electron and photon performance

9

Muon performance

b-tagging

Importance of identifying b-jets

- Key of many EWK processes
- QCD backgrounds usually from light quarks
- B decays have specific topologies
 - Displaced charged particles
 - Semileptonic decays

Several techniques

- Cut-based selection on tracks and secondary vertices
- MVA methods

Pile-up

Multiple proton-proton collisions in a single beam crossing

3D Towe

Evolved in time:

2012 <PU> ~ 20

2016 <PU> ~ 20-40

2017 <PU> ~ 50

2018 <PU> ~ 40

Run3 <PU> ~ 50

HL-LHC <PU> 150-200

Major effect on performance (ID, reco, isolation, missing energy, etc.)

Dissecting the Higgs sector

Minimal request of the SM: one electroweak doublet

$$\phi = \frac{1}{\sqrt{2}} \left(\begin{array}{c} \phi_1 + i\phi_2 \\ \phi_0 + i\phi_3 \end{array} \right)$$

- Most degrees of freedom absorbed to provide W[±] and Z mass (or L polarization)
- ϕ_0 remains as a scalar field \rightarrow Higgs boson

Reminder: fermions acquire mass through Yukawa interactions

The Higgs potential

- We are normally taught to neglect the self-coupling terms (higher order)
- Within the SM, this is certainly true
- Enhancements possible in many BSM scenarios

Coupling of Higgs to particles proportional to their masses

 \rightarrow Higgs production (and decays) mostly via W[±], Z⁰ and top quarks

Production at hadron colliders:

Higgs decays

Most relevant for h₁₂₅ Η H $\bar{\mathbf{b}}, \tau^+$ Branching Ratio LHC HIGGS XS WG 2016 bb WW gg ττ cc ZZ 10⁻² γγ 10⁻³ Zγ μμ 10-4 120 121 123 125 126 127 128 129 130 122 124 M_н [GeV]

 b, τ

Synergy of CMS and ATLAS with the **LHC Higgs Cross Section Working Group** Main forum for information exchange between theory and experimental communities

$H \rightarrow ZZ \rightarrow 4I$

- Very clean final state: four high momentum leptons
- Small number of events: BR(Z→II) ~ 3%
 - Low statistic, high purity

Kinematic discriminant

Use kinematic properties of signal/background to construct a discriminant to fit

m_{4L}

arXiv 2103.04956

Dissecting the signal

arXiv 2103.04956

Higgs mass measurement

Full Run-2 mass measurement done by ATLAS in $H \rightarrow ZZ \rightarrow 4I$

- \rightarrow All production modes included
- \rightarrow Kinematic fit to mass-constrain the first lepton pair to Z mass

$H \rightarrow \mu \mu$: first evidence

Limited by statistical uncertainty \rightarrow Run3 fundamental for discovery

Prod. Category	Obs. (exp.) significance ($m_H = 125.38$ GeV)
VBF	2.40 (1.77)
ggH	0.99 (1.56)
ttH	1.20 (0.54)
VH	2.02 (0.42)
Comb. 13 TeV	2.95 (2.46)
Comb Run 1+2	2.98 (2.48)

Uncertainty source	$\Delta \mu$	
Total uncertainty	+0.44	-0.42
Statistical uncertainty	+0.41	-0.39
Total systematic uncertainty	+0.17	-0.16
Size of simulated samples	+0.07	-0.06
Total experimental uncertainty	+0.12	-0.10
Total theoretical uncertainty	+0.10	-0.11

Measuring(-ish) the width

- Direct measure of the Higgs width not possible at LHC
 - Theory prediction ~ 4 MeV
 - Experimental resolution ~ O(GeV), under best conditions
- Use a trick: measure $\sigma_{on-shell}/\sigma_{off-shell}$
 - σ_{on-shell} depends on width, σ_{off-shell} doesn't
 Only works if couplings scale in the same
 - Only works if couplings scale in the same way, also with new physics
 - Usually measured in 4l final state

$$\Gamma_H = 3.2^{+2.8}_{-2.2} MeV$$

[0.08, 9.16] 95% CL

Systematic uncertainties ~ 0.5 MeV

5.1 fb⁻¹ (7 TeV) + 19.7 fb⁻¹ (8 TeV) + 77.5 fb⁻¹ (13 TeV) CMS Observed Expected Observed, 2016+2017 10 Expected, 2016+2017 $-2 \Delta \ln L$ 5 12 Δ 8 10 $\Gamma_{\rm H}$ (MeV)

PRD 99 (2019) 112003

Putting it all together

 $\kappa = rac{g_{meas}}{g_{SM}}$

Measurements of *BR translated into coupling measurements

The "kappa framework"

Correlations between POIs (and systematics)

28

An interesting exercise

BSM Higgs

Next-to-minimal-ish: 2HDM

Additional electroweak doublet

$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix} \quad \phi' = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_5 + i\phi_6 \\ \phi_7 + i\phi_8 \end{pmatrix}$$

5 degrees of freedom available

→ CP-even (h, H) CP-odd (A), H[±]

With few assumptions, free parameters of the theory: m_{h} , m_{H} , m_{A} , m_{H+} , $\tan\beta$, α

 $\boldsymbol{\alpha}$ is the mixing parameter between h and H

$$\tan(\beta) = \frac{\langle \varphi \rangle_0}{\langle \varphi' \rangle_0}$$

Somewhat problematic to produce common benchmarks with all these parameters

 \rightarrow Extensive work of theory/experiment within the LHC HXSWG

Parameters can be constrained in particular incarnations of 2HDM

 \rightarrow In MSSM, d.o.f. reduced to two parameters $\rightarrow m_A^{}$ and tan β Personal note: very "mild" BSM if no SUSY \rightarrow sideways SM!

Couplings in 2HDM

All mass eigenstates couple to both h and H in all configurations, but couplings depend on model

	Type I	Type II	Lepton-specific	Flipped
ξ_h^u	$\cos lpha / \sin eta$	$\cos \alpha / \sin \beta$	$\cos lpha / \sin eta$	$\cos \alpha / \sin \beta$
ξ^d_h	$\cos lpha / \sin eta$	$-\sin lpha / \cos eta$	$\cos lpha / \sin eta$	$-\sin lpha / \cos eta$
ξ_h^ℓ	$\cos lpha / \sin eta$	$-\sin lpha / \cos eta$	$-\sin lpha / \cos eta$	$\cos \alpha / \sin \beta$
ξ^u_H	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$
ξ^d_H	$\sin lpha / \sin eta$	$\cos lpha / \cos eta$	$\sin lpha / \sin eta$	$\cos lpha / \cos eta$
ξ_H^ℓ	$\sin lpha / \sin eta$	$\cos lpha / \cos eta$	$\cos lpha / \cos eta$	$\sin lpha / \sin eta$

Different scaling of up and down fermions

Different scaling of leptons and quarks Different scaling of up and down quarks, leptons flipped

 $g_{h,VV} \propto \sin(\beta - \alpha)$

 $g_{H,VV} \propto \cos(\beta - \alpha)$

Typical topologies

Signatures depend on mass hierarchy

High mass:

• $H \rightarrow hh, H^{\pm} \rightarrow W^{\pm}Z, H \rightarrow AZ, A \rightarrow Zh, H \rightarrow tt \dots$

Mid-high mass:

+ A/H \rightarrow TT/bb/µµ/WW/ZZ

Low mass:

- $A \rightarrow TT/bb/\mu\mu$
- Overlap with NMSSM (see later)

$A/H \rightarrow TT$

- Search in the $T_{lep}T_{had}$ and $T_{had}T_{had}$ in range [0.2,2.5] TeV
- \rightarrow Single lepton triggers ~ 25 GeV, single T around 150 GeV

"Bump" hunting over the transverse mass spectrum defined with missing energy

$$m_T^{\text{tot}} = \sqrt{(p_T^{\tau_1} + p_T^{\tau_2} + E_T^{\text{miss}})^2 - (p_T^{\tau_1} + p_T^{\tau_2} + E_T^{\text{miss}})^2}$$

N_{bjet} categorization to exploit different production mechanisms

\rightarrow Dependence of	on tanß fo	r both b	and T
e e periorene e			

Process	Generator	PDF	UEPS	Cross-section o
$ggF \\ bbH \\ W+jets \\ Z+jets \\ VV/V\gamma^* \\ t\bar{t} \\ Single t$	Powheg-Box v2 [61,62,63,64,65] MG5_aMC@NLO 2.1.2 [68,69] Sherpa 2.2.1 [71] Powheg-Box v1 [61,62,63,75] Sherpa 2.2 Powheg-Box v2 [76,61,62,63] Powheg-Box v2 [84,85,86,61,62,63]	CT10 [66] CT10 NNPDF 3.0 NNLO [72] CT10 NNPDF 3.0 NNLO NNPDF 3.0 NLO NNPDF 3.0 NLO	Рутніа 8.1 [67] Рутніа 8.2 [70] Sherpa 2.2.1 [73] Рутніа 8.1 Sherpa 2.2 Рутніа 8.2 Рутніа 8.2	See text See text NNLO [74] NLO [74] NLO NNLO+NNLL NNLO+NNLL

$A/H \rightarrow TT$

hh production

Can be done non-resonant (self coupling) or resonant

- The latter more relevant in these models

Strong compromise between statistics and purity

A case study: $hh \rightarrow bbZZ$ at CMS

- $Z(II) + Z(\nu\nu/jj)$
- Fit (pseudo)transverse mass in neutrino channel and BDT output in hadronic channel

Phys. Rev. D 102 (2020) 032003
$hh \rightarrow bbZZ results$

Intermezzo: hh combinations

hh at HL-LHC

CMS-FTR-18-019

Combination shows LHC won't provide a complete picture on di-Higgs physics

Combining into hMSSM

hMSSM:

- h₁₂₅ interpreted as lower mass Higgs boson
- CP conserving Higgs sector
- Superpartners too heavy to contribute to production and decay

Strong limit provided by constraints from ${\rm h}_{\rm 125}$

General 2HDM combination

Sensitivity strongly dependent on the choice parameters (and solution to ambiguities)

Still missing a full update to RunII of a generic 2HDM interpretation

2HDM + S

Common extension (see for example NMSSM)

Helps solving the "µ-problem"

Add one singlet (2 d.o.f.)

$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix} \quad \phi' = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_5 + i\phi_6 \\ \phi_7 + i\phi_8 \end{pmatrix}$$

 $+\phi_S$

Typically searched in a "lower" mass boson in $\mu\mu/TT/bb$

- Of particular interest in $h \rightarrow aa$ decays

$$h/H \rightarrow aa \rightarrow \mu\mu TT$$

Search for collimated dilepton pairs

3.6 < m_a < 21 GeV

Require isolated μ trigger with $p_{_T}$ > 24 GeV

Custom T-pair algo for collimated objects

 \rightarrow allow for a non-isolated μ in one T decay

Final state is $\mu\mu T_{h/e}T_{\mu}$

43

$h/H \rightarrow aa \rightarrow \mu\mu TT$

JHEP 08 (2020) 139

2HDM+S $h \rightarrow$ aa combination

Strong dependence on tan \Box and sign choice for couplings All topologies necessary to fully investigate the spectrum Most are statistically limited

LFV in Higgs decays

LFV strongly suppressed in SM

In Higgs decays, mediated by Yukawa couplings $Y_{e\mu}$, $Y_{e\tau}$, $Y_{\mu\tau}$ Scenarios include

- Higgs multiplets
- SUSY
- composite Higgs
- RS extra dimensions
- ...

 $H{\rightarrow}\,\mu e$ strongly constrained by indirect measurements

* concentrate on $H \rightarrow \mu T$ and eT

$H \rightarrow e \tau, \mu \tau$

CMS-PAS-HIG-20-009

Four final states: lT_h , $lT_{l'}$

- Limit DY Z->*ll* contributions

Samples characterized with BDT that is fitted to extract BR

- Binned in number of jets

Backgrounds: Z/H \rightarrow TT , Z \rightarrow *ll* , H \rightarrow WW, mis-ID background

Use of embedded and ABCD methods for background estimate

CMS-PAS-HIG-20-009

$H \rightarrow eT, \mu T$

$H \rightarrow \phi/\rho + \gamma$

Coupling to first and second generations (and up-type

quarks) for Higgs multiplets test

Greatly suppressed in SM

Experimental difficulty in trigger at LHC

ATLAS: use photon + modified T trigger

Branching Fraction Limit $(95\% \text{ CL})$	Expected	Observed
$\mathcal{B}\left(H ightarrow \phi\gamma ight)$ [10^{-4}]	$4.2^{+1.8}_{-1.2}$	4.8
$\mathcal{B}\left(Z ightarrow \phi\gamma ight)$ [10^{-6}]	$1.3\substack{+0.6\\-0.4}$	0.9
$\mathcal{B}\left(H ightarrow ho\gamma ight)$ [10^{-4}]	$8.4_{-2.4}^{+4.1}$	8.8
$\mathcal{B}\left(Z ightarrow ho\gamma ight)\left[ight.10^{-6} ight. ight]$	33^{+13}_{-9}	25

49

Considerations on future colliders

- Studies emerging to provide more complete view on Higgs perspectives in future colliders
- Fundamental step into decision making process for next generation accelerators
- Many scenarios, difficult to summarize all considerations, but...

Expected relative precision

kappa-0	HL-LHC	LHeC	HE-LHC	ILC ₂₅₀	ILC ₅₀₀	CLIC ₃₈₀	CLIC ₁₅₀₀	CLIC ₃₀₀₀	CEPC	FCC-ee ₂₄₀	FCC-ee ₃₆₅	FCC-ee/eh/hh
κ_W (%)	1.9	0.75	1.0	1.8	0.29	0.86	0.17	0.11	1.3	1.3	0.43	0.15
$\kappa_{Z}(\%)$	1.6	1.2	0.95	0.29	0.23	0.5	0.26	0.23	0.13	0.2	0.17	0.12
κ_{g} (%)	2.4	3.6	1.5	2.3	0.97	2.5	1.3	0.9	1.5	1.7	1.0	0.52
κ_{γ} (%)	1.9	7.5	1.2	6.7	3.4	98*	5.0	2.2	3.7	4.7	3.9	0.35
$\kappa_{Z\gamma}$ (%)	10.6	s—	4.0	99 *	86*	120*	15	6.9	8.2	81*	75 *	0.7
κ_{c} (%)		4.0	—	2.5	1.3	4.3	1.8	1.4	2.2	1.8	1.3	0.95
κ_t (%)	2.8		2.1	-	6.9	-	_	2.6			.—	1.0
κ_b (%)	3.5	2.1	2.3	1.8	0.58	1.9	0.48	0.38	1.2	1.3	0.67	0.45
κ_{μ} (%)	4.6		1.9	15	9.4	320*	13	5.8	8.9	10	8.9	0.42
κ_{τ} (%)	1.8	3.3	1.3	1.9	0.7	3.0	1.3	0.89	1.3	1.4	0.73	0.49

collider	(1) di-H excl.				
HL-LHC	+60%-50%99	IS: CUDIC	se	lf-coup	bling
HE-LHC	10-20% (n.a.)				
ILC250	-				
ILC350	-		1	HL-LHC	+LH
ILC500	27% (27%)		r	570	320
CLIC ₃₈₀	_		∧ u	570.	520
CLIC ₁₅₀₀	36% (36%)		ĸd	270.	150
CLIC ₃₀₀₀	$^{+11}_{-7}\%$ (n.a.)		Ks	13.	7.
FCC-ee ₂₄₀			Kc	1.2	
FCC-ee ₃₆₅	_				
FCC-ee/eh/hh	5% (5%)				
CEPC	_				

Upper bounds from rarer decays

	HL-LHC	+LHeC	+HE-LHC	+ILC ₅₀₀	+CLIC3000	+CEPC	+FCC-ee ₂₄₀	+FCC-ee/eh/hh	
ĸu	570.	320.	420.	330.	430.	290.	310.	280.	
κ_d	270.	150.	200.	160.	200.	140.	140.	130.	
Ks	13.	7.3	9.4	7.5	9.9	6.6	7.	6.4	
ĸc	1.2		0.87	measured directly					

from arXiv:1905.03764

Wrap-up

- Since the discovery, the Higgs boson has been observed in several final states
- Precision on its observables ~ 10-20% in many cases
 - This will go down to a few % at the end of LHC
- Not many tensions, in general pretty much compatible with SM expectations
- Search for new physics can be done with precision measurements or exotic final states
- A large phenomenology available for searches at LHC
- Sometimes provide interest push on our experimental techniques
- Need of common benchmarks

Testing the SM: top, W, Z physics

SM: what we measure

Can generally be divided into two categories:

Processes

- Single boson
- Multiboson
- Vector boson scattering
- Multijet
- Double parton scattering

Observables

- Inclusive cross sections
- Differential cross sections
- Rare decays
- Parameters (mass, widths, etc.)
- Anomalous couplings

Many of these are limited by theoretical knowledge (generators!)

Тор

top at LHC 101

Reminder: top decays before the typical hadronization phase Decay modes: leptonic, semileptonic, hadronic

Importance of masses: an example

Top cross section and mass

At LHC, main production of top is in tt pairs

Importance of cross section:

- Directly compare inclusive cross section to theory predictions (up to NNLO+NNLO QCD, with 5% precision)
- Differential cross sections for predictions and MC generators tuning
- Can extract other parameters (mass, α_{s} , etc)

Mass measurements:

- Direct, from decay products (very dependent on MC)
- Indirect, from other observables (mainly cross section)

Top quark is quite unique: heaviest fundamental particle with color charge!

m_t: problems with definition

m₊ relation to observables difficult to define

Two main approaches:

- **MS** scheme
$$m^0 = \overline{m}(\mu) \left[1 - \frac{\alpha_s}{\pi \epsilon} + \dots \right]$$

- Running mass
- Applies better for μ > m
- Very different from kinematic mass

- **Pole scheme**
$$m^0 = m^{\text{pole}} \left[1 - \frac{\alpha_s}{\pi \epsilon} + ... \right] - \Sigma^{\text{fin}}(m^{\text{pole}}, m^{\text{pole}}, \mu)$$

- Mass at the pole of the renormalized propagator
- Closer to a kinematic mass definition
- Limited precision O(GeV)

MC generators

- hard scattering
- (QED) initial/final state radiation
- partonic decays, e.g. $t \rightarrow bW$

 parton shower evolution

- nonperturbative gluon splitting
- colour singlets
- colourless clusters
- cluster fission
- cluster → hadrons
- hadronic decays

Challenges:

- Matrix elements
- Parton shower
- Hadronization

General considerations:

- QCD modelization partly first principles partly effective models
- Data often have better accuracy
- Different treatment of m_t in matrix elements and parton showers

Inclusive σ_{tt} at 13 TeV

PLB 810 (2020) 135797

lepton+jet channel

- e/μ with $p_{T} > 25/27/28$ GeV for 2016/17/18
- 4 jets, one or two b-tagged
- $E_{T,miss}$ > 30 GeV and $m_{T}(W)$ > 30 GeV Split in different signal regions in number of (b-)jets

	>3j	=4j	>4j
	1 b	2 b	2 b
	SR1	SR2	SR3
tī	3630000 ± 210000	990000 ± 90000	980000 ± 100000
W+jets	350000 ± 160000	24000 ± 10000	17000 ± 9000
Single top	255000 ± 31000	52000 ± 7000	37000 ± 8000
Z+jets & diboson	80000 ± 40000	8000 ± 4000	5800 ± 3000
$t\bar{t}X$	15600 ± 2100	2110 ± 290	7200 ± 1000
Multijet	$210000\pm\ 80000$	28000 ± 10000	22000 ± 8000
Total prediction Data	$\begin{array}{r} 4540000\pm310000\\ 4540886\end{array}$	$\frac{1\ 110\ 000\ \pm\ 100\ 000}{1\ 100\ 558}$	$\frac{1070000\pm100000}{1103317}$

Inclusive σ_{tt} at 13 TeV

Data / Pred.

PLB 810 (2020) 135797

 $(\hat{\theta} - \theta_0) / \Delta \theta$

$\sigma_{\rm tt}$ in lepton channel and $m_{\rm t}$

Use leptonic W decays and count b-tagged jets

Only e- μ final state to reduce Z backgrounds Inclusive:

- Most precise measurement of σ_{tt}

 $\sigma_{t\bar{t}} = 826.4 \pm 3.6 \,(\text{stat}) \pm 11.5 \,(\text{syst}) \pm 15.7 \,(\text{lumi}) \pm 1.9 \,(\text{beam}) \,\text{pb}$

m_{t,pole} limited by theory

Differential (triple in M_{tt}, y and N_{iet})

- M_{tt} from kinematic fit with mass constraints on Ws and ts
- Simultaneous measurement of $\rm m_t$ and $\rm \alpha_s$
- Most precise determination m_{t,pole}

$$m_{\rm t}^{\rm pole} = 170.5 \pm 0.7 \,({\rm fit}) \pm 0.1 \,({\rm model})^{+0.0}_{-0.1} \,({\rm param}) \pm 0.3 \,({\rm scale}) \,{\rm GeV}$$

EPJC 80 (2020) 528

Single top production

Different sample from tt measurements \rightarrow combination

Search for a charged lepton, missing energy, a b-jet and a light jet

Additional b-jet from gluon splitting undetected

Use of W transverse mass for background rejection

$$m_{\rm T}^{\rm W} = \sqrt{(p_{{\rm T},\ell} + p_{{\rm T}}^{\rm miss})^2 - (p_{{\rm x},\ell} + p_{{\rm x}}^{\rm miss})^2 - (p_{{\rm y},\ell} + p_{{\rm y}}^{\rm miss})^2}$$

Mass determined from fit to spectrum

Single top production

CMS-PAS-TOP-19-009

Use lepton charge to separate t and tbar contributions to test CPT symmetry

Running m_t

MS scheme approach: mass depends on the scale $\mu_{\rm m}$

Measure differential tt cross section in dilepton channel

as a function of M_{tt} Running determined using NLO predictions Exclude no-running scenario at 95% CL

Solve the Renormalization Group Equation

$$\mu^2 rac{\mathrm{d} m(\mu)}{\mathrm{d} \mu^2} = -\gamma(lpha_S(\mu)) \ m(\mu)$$

with γ known to 5-loop QCD

PLB 803 (2020) 135263

Mass combination

Heavily limited by systematics

- New ideas/technique more important than collecting statistics
- Constrained by theoretical uncertainties

Full combination long due

 Extremely complicated because of correlated systematics

Top charge asymmetry

Expected effect due to proton PDFs

Null at LO, emerges in interference between qq and qg production in higher orders

Valence quarks carry more momentum than sea antiquarks

Use the single lepton final state

$$A_C = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$

Use bayesian unfolding to extract rapidity with acceptance and detector resolution

$$A_C = 0.0060 \pm 0.0015$$

 $A_C^{NNLO} = 0.0064 \pm 0.0006$

Result consistent with theory prediction 4σ significance for non-zero A_c

W polarization in top decays

In top decays, W polarization determined by V-A structure of vertex

In SM unitary imposes $F_0 + F_L + F_R = 1$

Anomalous contributions

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta^*} = \frac{3}{4} \left(1 - \cos^2\theta^*\right) F_0 + \frac{3}{8} \left(1 - \cos\theta^*\right)^2 F_L + \frac{3}{8} \left(1 + \cos\theta^*\right)^2 F_R$$

In SM: ~70% ~30% ~0%

Combined ATLAS+CMS result (I+jets, single top)

 $F_0 = 0.693 \pm 0.009 \text{ (stat+bkg)} \pm 0.011 \text{ (syst)}$ $F_L = 0.315 \pm 0.006 \text{ (stat+bkg)} \pm 0.009 \text{ (syst)}$ $F_R = -0.008 \pm 0.005 \text{ (stat+bkg)} \pm 0.006 \text{ (syst)}$

Good agreement with theory predictions @ NNLO

arXiv:2005.03799

Region

CR Conv.

CR HF e

CR HF μ

CR ttW

SR

Channel

2LSS/3L

 $e^{\pm}e^{\pm}||e^{\pm}\mu^{\pm}|$

eee || eeµ

еµµ || µµµ

 $e^{\pm}\mu^{\pm}||\mu^{\pm}\mu^{\pm}|$

Ni

 ≥ 6

>4

 $4 \leq N_i < 6$

Nb

 ≥ 2

>1

= 1

= 1

> 2

Other requirements

 $m_{ee}^{\text{CV}} \in [0, 0.1 \text{ GeV}]$

 $200 < H_{\rm T} < 500 \, {\rm GeV}$

 $100 < H_{\rm T} < 250 \,{\rm GeV}$

 $100 < H_{\rm T} < 250 \,{\rm GeV}$

 $m_{ee}^{\text{CV}} \notin [0, 0.1 \text{ GeV}], |\eta(e)| < 1.5$

For $N_b = 2$, $H_T < 500$ GeV or $N_j < 6$

 $H_{\rm T} > 500$

tttt production

Combination in multiple decay channels

Most sensitive are 2LSS/3L

Massive state with ~ 700 GeV

Sensitive to 2HDM scenarios

Events

Data / Pred.

g Japa eeee agaa t g Japa eee t t

Fitted variable

BDT

mee

Counting

Counting

 $\Sigma p_{\mathrm{T}}^{\ell}$

Top at HL-LHC

Vector bosons

Drell-Yan production 101

Theoretically very well known in SM up to NNLO Experimentally very clean \rightarrow the bread and butter of LHC experiments
10³

p^z_T [GeV]

Typical DY selection at LHC

dσ/dp^Z [pb/GeV Single lepton triggers with $p_{\tau} > 24 \text{ GeV}$ 45 🕀 Data 40 Threshold higher in 2017/18 35 **Isolation** already at trigger 30 $Z/\gamma^{^{\star}} \rightarrow \mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$ Tighter offline selection (usually O(GeV)) 25 Select opposite charge same-flavor leptons within |η| < 2.4, p_τ > 25 GeV 20 the tracking acceptance 15 Reject events with additional leptons with $p_{\tau} > 10 \text{ GeV}$ 10 5

Main backgrounds are tt (leptonic), WW, tW

Final state	Data	$Z \to \ell \ell$	Resonant background	Nonresonant background
$\mu\mu$	20.4×10^6	20.7×10^6	$30 imes 10^3$	41×10^3
ee	12.1×10^6	12.0×10^6	19×10^3	$26 imes 10^3$

 10^{2}

10

CMS

Z differential cross section

Weak mixing angle from A_{FB}

Eur. Phys. J C 78 (2018) 701

Weak mixing angle from A_{FB}

Eur. Phys. J C 78 (2018) 701

W branching fractions

PR 532, 119-244 (2013)

W Leptonic Branching Ratios

Use tt, tW, WW, W+jets production in N_{iet} categories $N_{\rm j}=2\mid N_{\rm j}=3\mid N_{\rm j}\geq 4$ $N_{\rm i} = 0$ $N_{\rm i} = 1$ eτ, μτ, eτ, μτ, ετ, μτ $N_{\rm b} = 0$ eμ eµ ee, µµ, eµ ετ, μτ ετ, μτ, εμ ετ, μτ $N_{\rm b} = 1$ ee, µµ, eµ

Tension in LEP combination

Measure inclusive hadronic BR

ετ, μτ ετ, μτ $N_{\rm b} \geq 2$ ee, µµ, eµ CMS $\mathcal{B}(W \to e\overline{\nu}_e)$ $(10.83 \pm 0.01 \pm 0.10)\%$ $(10.71 \pm 0.14 \pm 0.07)$ % $(10.94 \pm 0.01 \pm 0.08)\%$ $(10.63 \pm 0.13 \pm 0.07)$ % $\mathcal{B}(W \to \mu \overline{\nu}_u)$ $\mathcal{B}(W \to \tau \overline{\nu}_{\tau})$ $(10.77 \pm 0.05 \pm 0.21)\%$ $(11.38 \pm 0.17 \pm 0.11)$ % $\mathcal{B}(W \rightarrow h)$ $(67.46 \pm 0.04 \pm 0.28)\%$ with LU $\mathcal{B}(W \to \ell \overline{\nu})$ $(10.89 \pm 0.01 \pm 0.08)\%$ $(10.86 \pm 0.06 \pm 0.09)\%$ $\mathcal{B}(W \rightarrow h)$ $(67.32 \pm 0.02 \pm 0.23)\%$ $(67.41 \pm 0.18 \pm 0.20)\%$

 $/^{\pm} \rightarrow \pi^{\pm} \gamma$

Exclusive hadronic decay of W never observed

CMS-SMP-20-008

Interesting to tune hadronization description of vector bosons

Direct search at LHC impossible (trigger!)

BUT, one can use tt production Pion is produced from EWK process, so isolation applies

LFV in Z decays

Search for $Z \rightarrow \ell \tau$, with both leptonic and hadronic τ decays Use NN for S/B discrimination through fit

Events / 0.025 ATLAS Data 3500 Fake lepton Vs = 13 TeV, 139 fb⁻¹ $\rightarrow TT$ 3000 Low- p_{T} SR, eT_{μ} Top quark Diboson 2500 Higgs →er(B=3×10 2000 1500 1000 500 1.25 Data / pred 1.125 0.875 0.75 0.2 0.3 0.4 0.5 0.9 0.6 0.8 0.1 0.7 Combined NN output

	Uncertainty in $\mathcal{B}(Z \to \ell \tau)$ [×10 ⁻⁶]		
Source of uncertainty	ετ	μτ	
Statistical	±3.5	±3.9	
Fake leptons (statistical)	± 0.1	± 0.1	
Systematic	± 2.7	± 3.4	
Light leptons	± 0.4	± 0.4	
$E_{\rm T}^{\rm miss}$, jets and flavor tagging	± 2.1	± 2.4	
E_{T}^{miss}	± 0.4	± 0.8	
Jets	±1.9	±2.2	
Flavor tagging	±0.5	±0.9	
Z-boson modeling	< 0.1	± 0.1	
$Z \rightarrow \mu \mu$ yield	-	± 0.8	
Other backgrounds	± 0.1	± 0.6	
Fake leptons (systematic)	±0.4	±0.9	
Total	±4.4	±5.2	

	Observed (expected) upper limit on $\mathcal{B}(Z \to \ell \tau)$ [×10 ⁻⁶]				
Final state, polarization assumption	ет	μτ			
$\ell \tau_{had}$ Run 1 + Run 2, unpolarized τ [9]	8.1 (8.1)	9.5 (6.1)			
$\ell \tau_{had}$ Run 2, left-handed τ [9]	8.2 (8.6)	9.5 (6.7)			
$\ell \tau_{had}$ Run 2, right-handed τ [9]	7.8 (7.6)	10 (5.8)			
$\ell \tau_{\ell'}$ Run 2, unpolarized τ	7.0 (8.9)	7.2 (10)			
$\ell \tau_{\ell'}$ Run 2, left-handed τ	5.9 (7.5)	5.7 (8.5)			
$\ell \tau_{\ell'}$ Run 2, right-handed τ	8.4 (11)	9.2 (13)			
Combined $\ell \tau$ Run 1 + Run 2, unpolarized	1τ 5.0 (6.0)	6.5 (5.3)			
Combined $\ell \tau$ Run 2, left-handed τ	4.5 (5.7)	5.6 (5.3)			
Combined $\ell \tau$ Run 2, right-handed τ	5.4 (6.2)	7.7 (5.3)			

V+heavy flavor

Important for MC tuning Major background in many BSM searches Probe of heavy quark PDF

80

Case study: Z+charm

JHEP 04 (2021) 109

JHEP 04 (2021) 109

V+heavy flavor

Channel	QCD (%)	PDF $(%)$	c tag/mistag (%)	JER (%)	JES (%)	Pileup (%)	Top Pair (%)	ID\Iso (%)	L (%)	MC stat. (%)	σ_{theo}
$\mu\mu, p_{\mathrm{T}}^{\mathrm{c \ jet}}$	5.5	0.5	4.2	3.9	4.8	1.5	0.6	1.0	2.5	4.2	Cha
$\mu\mu, p_{\mathrm{T}}^{2}$ ee, $p_{\mathrm{T}}^{\mathrm{c \ jet}}$	$\begin{array}{c} 1.9\\ 6.4\end{array}$	0.5 0.6	4.2 4.2	$\frac{1.1}{3.1}$	3.9 6.4	1.6 3.0	$\begin{array}{c} 0.8 \\ 0.7 \end{array}$	$\frac{1.0}{2.6}$	$2.5 \\ 2.5$	$\begin{array}{c} 3.1 \\ 6.3 \end{array}$	Спа
ee, p_{T}^{Z}	2.6	0.5	4.1	1.1	4.8	1.8	0.6	2.6	2.5	3.8	

 $p_o = 524.9 \pm 11.7$ (theo) pb

rm content of proton overestimated?

Triple differential **x**+jets

Main processes are quark-gluon Compton scattering and qq annihilation

Test of QCD and probe of gluon PDF

NLO calculations available for comparison

Data with low uncertainties in lower E_{τ} regions, can allow to constrain/select **PDF** sets

Self coupling

 $W/Z(/\gamma)$ self couplings predicted by non-abelian structure of electroweak theory Large zoo of topologies to be explored

 \rightarrow Inclusive di-(multi-) boson production, w/o jets

 \rightarrow Constrain anomalous couplings $L_{\text{EFT}} = L_{\text{SM}} + \sum_{i} \frac{\bar{C}_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{i} \frac{\bar{C}_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{i}^{(8)} + \dots$

Higgs and V-V scattering

Scattering of W-W bosons

WZ production

Study of WZ production at 13 TeV in leptonic final states

- Inclusive total and differential cross sections
- Charge asymmetry and polarization
- Triple gauge couplings

CMS-PAS-SMP-20-014

Charge asymmetry: good test of proton PDF description

85

VVjj production

An "electroweak signature" (-ish) of VV production

Currently well established, several

measurements strive for precision

NLO predictions available

Data_

0.5

ATLAS: ZZ production , lllljj HEW Significance Obs (Exp.)

	MEW	rqcd	Significance	сов. (Емр.)	
llljj	1.5 ± 0.4	0.95 ± 0.22	5.5 (3.	9) <i>σ</i>	q
<i>llvvjj</i>	0.7 ± 0.7	_	1.2 (1.	8) <i>σ</i>	
Combined	1.35 ± 0.34	0.96 ± 0.22	5.5 (4.	3) <i>σ</i>	
	Data MADGRAPH5_a MADGRAPH5_a Same	137 MC@NLO+Pythia8 witho MC@NLO+Pythia8 with r -Sign W\	7 fb ⁻¹ (13 TeV)	22 20 10 10 8 10 8 10 8 6 4	A

LL

0.8

MD

0.6

0.2 0.4

WWjj polarization

Longitudinal component sensitive to Higgs boson restoring unitarity

Limited combinations of longitudinal/transverse polarization of same-sign WW

significance of 2.3 σ (3.1 σ expected)

Photon induced WW production

Photon induced WW production

Event counting in kinematic categories

 $\sigma_{\rm meas} = 3.13 \pm 0.31 \,({\rm stat.}) \pm 0.28 \,({\rm syst.}) \,{\rm fb}$

Arxiv:2010.04019

Exclusive **yy** with intact protons

No event survives matching of protons and photons

p

р

First limit on quartic couplings:

$$\begin{split} L_8^{\gamma\gamma\gamma\gamma} &= \zeta_1 F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2 F_{\mu\nu} F^{\mu\rho} F_{\rho\sigma} F^{\sigma\nu} \\ |\zeta_1| &< 3.7 \times 10^{-13} \text{ GeV}^{-4} \quad (\zeta_2 = 0) \\ |\zeta_2| &< 7.7 \times 10^{-13} \text{ GeV}^{-4} \quad (\zeta_1 = 0) \end{split}$$

VVV: first observation

VVV: first observation

Phys. Rev. Lett. 125 (2020) 151802

Complete picture

Complete picture (II)

96

Vector bosons at HL-LHC

97

Wrap-up

LHC is a top/vector boson factory

Huge amount of final states and possible analyses to be performed Physics program of experiments far from being completed Direct access to many fundamental parameters of SM Incentive to work with(in) theory community

Serve both search for new physics and improve understanding of SM (often via MC tuning)

Many final states relevant for BSM searches (see next)

Many analyses start to be systematically limited

Push on experimental techniques

Flavor physics

CKM 101

CKM matrix is a rotation matrix between quark mass eigenstates and weak interaction eigenstates

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} \simeq \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

It's all about the phases! Remember: CPV only emerges in interference between diagrams

Flavor tagging at LHC

Mistag rate introduces dilution factor to measured CP violation

B oscillations

Oscillation frequency with $\Delta m = m_{H} - m_{I}$

Need optimal time resolution to be sensitive LHCb reaches ~15% in B_s period resolution $\Delta m_s = (17.7666 \pm 0.0057) \text{ ps}^{-1}$

Three types of measurable CP violation:

 in decay (direct): amplitude of decay and CP conjugate are different. Can occur in charged B mesons

 $\mathcal{P}(B^0 \to f) \neq \mathcal{P}(\bar{B^0} \to \bar{f})$

2) in mixing

 $\mathcal{P}(B^0 \to \bar{B^0}) \neq \mathcal{P}(\bar{B^0} \to B^0)$

3) in interference of decay and mixing

$$A_{CP} = \frac{\left|\overline{A}_{\overline{f}}\right|^2 - \left|A_f\right|^2}{\left|\overline{A}_{\overline{f}}\right|^2 + \left|A_f\right|^2}$$

Time integrated

$$A_{CP}(t) = \frac{\Gamma_{\bar{B}^0_{(s)} \to f}(t) - \Gamma_{B^0_{(s)} \to f}(t)}{\Gamma_{\bar{B}^0_{(s)} \to f}(t) + \Gamma_{B^0_{(s)} \to f}(t)} = \frac{-C_f \cos(\Delta m_{d(s)}t) + S_f \sin(\Delta m_{d(s)}t)}{\cosh\left(\frac{\Delta\Gamma_{d(s)}}{2}t\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_{d(s)}}{2}t\right)}$$

Time dependent

The key is PID (and vertexing...)

 $B^0_{(s)} \rightarrow h^+h^-$

arXiv:2012.05319

$$C_{\pi\pi} = -0.311 \pm 0.045 \pm 0.015$$

$$S_{\pi\pi} = -0.706 \pm 0.042 \pm 0.013$$

$$C_{KK} = 0.164 \pm 0.034 \pm 0.014$$

$$S_{KK} = 0.123 \pm 0.034 \pm 0.015$$

$$A_{KK}^{\Delta\Gamma} = -0.83 \pm 0.05 \pm 0.09,$$

$$B_{D}^{0} = -0.0824 \pm 0.0033 \pm 0.0033$$

$$B_{D}^{0} = 0.236 \pm 0.013 \pm 0.011.$$

106

The K- π puzzle

 $A_{CP}(B^+ \to K^+ \pi^0) = 0.025 \pm 0.015 \pm 0.006 \pm 0.003$

 $A_{CP}(B^+ \to K^+ \pi^0) - A_{CP}(B^0 \to K^+ \pi^-) = 0.115 \pm 0.014$

now 8 σ from zero

χ from B \rightarrow Dh

Main way to access $\gamma = \arg \left| -\frac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}} \right|$ W Workhorse of LHCb physics program V_{cb} D^0 B^{-} Interference between favoured and suppressed diagrams Final state common to D⁰ and anti-D⁰ $A_B \propto A_D + r_B e^{i(\delta_B - \gamma)} A_{\bar{D}}$ Relative weak phase + strong phase

multibody \rightarrow function of Dalitz plot position 2-body \rightarrow constant

γ from B \rightarrow Dh

Multibody charm decays: Dalitz plot!

For example using D->K_s $\pi\pi$

 $A_B(m_-^2, m_+^2) \propto A_D(m_-^2, m_+^2) + r_B e^{i(\delta_B - \gamma)} A_{\overline{D}}(m_-^2, m_+^2)$

γ combination

Experimental combination

Theoretical prediction

 $\gamma = (67 \pm 4)^{\circ} \quad \gamma = (65.7^{+0.9}_{-2.7})^{\circ}$

C LHCb-CONI

LHCb-CONF-2020-003

Top row

Leptonic B decays

Highly suppressed in SM (FCNC + helicity)

Very little uncertainty for hadronic part

Analysis can be performed by all three experiments

 $\begin{array}{rcl} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &=& (3.66 \pm 0.14) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &=& (1.03 \pm 0.05) \times 10^{-10} \end{array}$

B(s)->μμ at LHCb

Bump hunting in the $m_{\mu\mu}$ spectrum in [4.9,6] GeV

Use of BDT trained on two-body B decays to improve sensitivity

Main background is dimuon combinatorics

Need to normalize to another process (hadron collider!)

$$\mathscr{B}(B^0_{(s)} \to \mu^+ \mu^-(\gamma)) = \frac{f_{\text{sig}}}{f_d} \frac{\varepsilon_{\text{norm}}}{\varepsilon_{\text{sig}}} \frac{N_{\text{sig}}}{N_{\text{norm}}} \mathscr{B}(\text{norm}) \quad \text{typically } B^+ \to J/\psi \text{ K}$$

 f_s/f_d measured by LHCb

One of the most important uncertainties

LFU and b→sll

In SM couplings of leptons to vector bosons are flavor independent

This doesn't hold in NP

 $b \rightarrow sll: a good lab of FCNC$

rare in SM (loop), can enter at tree level in NP

 $B \rightarrow K^{(*)}I^+I^-$ has an extensive physics program at LHCb (and with tensions wrt SM)

Typical selection (from the BR measurement):

Muon trigger + secondary b-vertex K_s and K^* selection with mass cuts 5170 < m_{Kµµ} < 5700 GeV BDT selection based on kinematics

$$\begin{split} B^+ &\to K^+ \mu^+ \mu^- \\ B^0 &\to K^0_{\rm S} \mu^+ \mu^- \\ B^+ &\to K^{*+} (\to K^0_{\rm S} \pi^+) \mu^+ \mu^- \\ B^0 &\to K^{*0} (\to K^+ \pi^-) \mu^+ \mu^- \end{split}$$

$B \rightarrow K^{(*)}II: many puzzles$

Measurement of R_κ

Use double ratio wrt J/ $\psi\mu$ to control e- μ contamination

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to J/\psi \, (\to \mu^{+} \mu^{-}) K^{+})} \Big/ \frac{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})}{\mathcal{B}(B^{+} \to J/\psi \, (\to e^{+} e^{-}) K^{+})}$$

Measurement of R_K

Decay mode	Yield
$B^+ \rightarrow K^+ e^+ e^-$	1640 ± 70
$B^+ \rightarrow K^+ \mu^+ \mu^-$	3850 ± 70
$B^+ \rightarrow J/\psi (\rightarrow e^+ e^-) K^+$	$743300\pm~900$
$B^+ \to J/\psi (\to \mu^+ \mu^-) K^+$	2288500 ± 1500

 $R_K(1.1 < q^2 < 6.0 \,\text{GeV}^2/c^4) = 0.846 \,{}^{+\,0.042}_{-\,0.039} \,{}^{+\,0.013}_{-\,0.012}$

 3.1σ from SM expectation

CPV in charm decays

CPV in up sector largely suppressed in SM

Asymmetries expected of $O(10^{-4}-10^{-3})$

but very large hadronic uncertainties

LHCb: measure the difference between the asymmetries in KK and $\pi\pi$ final states

$$\begin{split} \Delta A_{CP} &\equiv A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+) \\ &\approx \Delta a_{CP}^{\rm dir} - \frac{\Delta \langle t \rangle}{\tau(D^0)} A_{\Gamma}, \end{split}$$

need to determine the initial flavor of the D meson, so in reality measure

$$A_{\rm raw}^{\pi-{\rm tagged}}(f) \equiv \frac{N(D^{*+} \to D^0(f)\pi^+) - N(D^{*-} \to \bar{D}^0(f)\pi^-)}{N(D^{*+} \to D^0(f)\pi^+) + N(D^{*-} \to \bar{D}^0(f)\pi^-)}$$

which relates to what we are interested by

$$A_{\text{raw}}^{\pi-\text{tagged}}(f) \approx A_{CP}(f) + A_{D}(\pi) + A_{P}(D^{*})$$

can also use b->clv decays

$D^0 \rightarrow h^+ h^-$

PhysRevLett 122 (2019) 211803

Flavor physics at HL-LHC

$\pm 33.0 \times 10^{-4}$	±5.4	±49	$\pm 28.0 \times 10^{-5}$	LHCb
				Current
	±1.5		$\pm 35.0 \times 10^{-5}$	Belle II ATLAS/CMS
$\pm 10.0 \times 10^{-4}$	±1.5	±14	$\pm 4.3 \times 10^{-5}$	LHCb
				2025
		±22		
$\pm 3.0 \times 10^{-4}$	±0.35	±4	$\pm 1.0 \times 10^{-5}$	
a _{sl}	γ[°]	ϕ_s [mrad]	AΓ	HL-LHC

±10.0	±2.6	±90	LHCb
			Current
±3.6	±0.50		Belle II
±2.2	±0.72	±34	LHCb
			2025
		±21	
±0.70	±0.20	±10	
R _K [%]	R(D [*]) [%]	$\frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B_c^0 \to \mu^+ \mu^-)} \ [\%]$	HL-LHC

Flavor physics at HL-LHC

Spectroscopy: a case study

CMS-BPH-20-004

** cascade

123

Exotic searches

Exotic-ness is in the eye of the beholder

Two approaches to BSM:

- "SM" topologies, like di-particle searches

- "BSM" topologies, like (LF)V, high missing energy, etc

Boosted topologies

Searches for massive particles into bosons and top

 \rightarrow decay products highly collimated

Rethinking of reconstruction/ID techniques:

- merged jets
- isolated leptons
- b-tagging

High mass di-lepton

More interpretations

Use the di-muon and di-lepton mass spectra to test LF universality in high energy regime

$$R_{\mu^+\mu^-/e^+e^-} = \frac{d\sigma(q\overline{q} \to \mu^+\mu^-)/dm_{\ell\ell}}{d\sigma(q\overline{q} \to e^+e^-)/dm_{\ell\ell}}$$

Limit on ultraviolet cutoff in ADD models

- Quasi-continuum KK graviton modes
- Non-resonant cross section increase at high mass for virtual graviton contributions

$X \rightarrow tt$

JHEP 10 (2020) 61

 \rightarrow Z') × B(Z'

Bump hunting over the tt spectrum

Search in fully hadronic decay

Top decay as a single jet with substructure

Use DeepNN to discriminate internal structure

CMS-PAS-B2G-20-005

Search for $X \rightarrow Z V \rightarrow \nu \nu \eta q$

Search for resonance in diboson spectrum

Compatible with radions, gravitons, Z', W', ...

Discriminating observable is the transverse mass

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\rm J} p_{\rm T}^{\rm miss} [1 - \cos \Delta \phi]}$$

Leptoquarks

Bosons carrying lepton and baryon numbers

RPV SUSY, GUT

Compatible with recent LFU violation hints in B physics

- scalar or vector
- carry fractional charge
- color triplet

arXiv:2101.11582

Vector-like quarks

Vector-like quarks in composite/little Higgs, SUSY

Spin 1/2 color triplets

L and R transform in same way under gauge \rightarrow mass not generated by Yukawa Higgs interaction Interact with SM with Yukawa couplings \rightarrow third generation

Decay via neutral or charged current

$T \rightarrow Wb$

Search in leptonic W decay

Three jets, one b-tagged

Exactly 1 lepton

Include interference with SM single top production

JHEP 05 (2019) 164

Dark matter

- Search for DM in a much more controlled environment
- Main limitation is missing energy resolution Vast array of models and topologies to test Good complementarity with astrophysics searches

"After the discovery of 'antimatter' and 'dark matter', we have just confirmed the existence of 'doesn't matter', which does not have any influence on the Universe whatsoever."

$H \rightarrow invisible$

Search for missing energy associated with H production

- VBF, ZH, WH signatures

Analysis	\sqrt{s} [TeV]	Int. luminosity $[fb^{-1}]$	Best fit $\mathcal{B}_{H \to \text{inv}}$	Observed upper limit	Expected upper limit
Run 2 VBF	13	139	$0.00\substack{+0.07\\-0.07}$	0.13	$0.13\substack{+0.05\\-0.04}$
Run 2 $t\bar{t}H$	13	139	$0.04_{-0.20}^{+0.20}$	0.40	$0.36\substack{+0.15 \\ -0.10}$
Run 2 Comb.	13	139	$0.00\substack{+0.06\\-0.07}$	0.13	$0.12\substack{+0.05\\-0.04}$
Run 1 Comb.	7,8	4.7, 20.3	$-0.02^{+0.14}_{-0.13}$	0.25	$0.27_{-0.08}^{+0.10}$
Run 1+2 Comb.	7, 8, 13	4.7, 20.3, 139	$0.00\substack{+0.06\\-0.06}$	0.11	$0.11\substack{+0.04\\-0.03}$

Interpret in the context of Higgs portal models

Translate limit into DM-N cross section in EFT

Very competitive and complementary search

.... but many assumptions on this plot!

Unfortunately, systematics will limit future prospects of these measurements

$H \rightarrow invisible at HL-LHC$

- Projections to 3 ab⁻¹ show search limited by systematic uncertainties
- Not the biggest surprise: tough analysis in pp environment, with great experimental challenges ~ 20

Interesting exercise:

- Test scenario with missing mass
 resolution worse by factor 2
 Case of *extreme* PU conditions
- Conclusion:
 - Analysis is flexible enough to yield similar limits with selection re-optimization

Displaced vertices

Both SUSY and some DM models (overlap) predict long living particles produced at LHC

Secondary vertex can be up to 10 cm

Dedicated tracking algorithms

CMS search in multi-jet final state

Displaced vertices on transverse plane Masses of LLP > 600 GeV (trigger)

Combining displacements

Depending on distance travelled, displaced objects appear in different detectors

Combine different techniques to cover larger parameter space

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

RPV

RPC

Other

145

The (overwhelming) picture

Overview of CMS EXO results

Wrap up

LHC has a robust flavor physics program Complementarity among experiments

Measurements competitive with B-factories

Exotica represents main searches of BSM physics at LHC

Versatility of experiments allows to search for a large set of topologies

Built on SM physics, but new techniques are needed

We do not know if/when LHC will see BSM signals

→ leave no stone unturned!

Backup

$H \rightarrow eT, \mu T$

CMS-PAS-HIG-20-009

Derived from
$$\Gamma(H \to \ell^{\alpha} \ell^{\beta}) = \frac{m_{\rm H}}{8\pi} (|Y_{\ell^{\alpha} \ell^{\beta}}|^2 + |Y_{\ell^{\beta} \ell^{\alpha}}|^2)$$

Higgs triplets

Higgs sector organized in triplets: a nice way to provide neutrino masses via type-II seesaw mechanism

 \rightarrow Generic forms suffer for large radiative corrections

Georgi-Machacec: two triplets, one real and one complex

corrections preserved via custodial symmetry

Generates two scalars, $H_{1,2}^{+}$, H^{++}

CMS

H++/H

 W^{\pm}

 \mathbf{W}^{\pm}

 $\mathrm{H}^{\pm\pm}$

137 fb⁻¹ (13 TeV)

$H^{+(+)} \rightarrow vector bosons$

VBF $H^+ \rightarrow W^+Z$ and $H^{++} \rightarrow W^+W^+$ in leptonic decays Mass degeneracy

 \rightarrow simultaneous search in 200 < m_{H5} < 2000 GeV range

tt, tZq and ZZ backgrounds estimated from data

inverting b-tag and same-sign selections

$H^{+(+)} \rightarrow vector bosons$

$H^{+(+)} \rightarrow vector bosons$

