

John Walsh INFN, Pisa

SuperB Computing Mini-Workshop SLAC, Dec 7, 2007

Main Issues

Detector Optimization

- perform simulations to try to optimize detector parameters, e.g. radius of Layer0
- external constraints
- Characterization of performance
 - once we have optimized, estimate expected performance → input for physics studies
- Tools
 - detector simulations
 - algorithms

Time scale of TDR: completion in 2 years, need working tools well before that

Baseline Vertex Tracker for SuperB

Support cooling channel Ladder Start with Babar SVT as baseline Add Layer0 pixels at small radius Possible (small) changes in outer -Sensor Plane beam ala layers – smaller boost in SuperB **BaBar Silicon Vertex Tracker** Kevlar/carbon-fiber support rib Si detectors Carbon-fiber endpiece z=0 Cooling ring 20 cm Upilex fanouts Carbon-fiber support cone Hybrid/readout ICs Beam pipe 300 350 m e-Layer0 . . .**Y**. new beam pipe 30 cm⁻ 40 cm

J. Walsh SuperB Computing Mini-Workshop

Double

Layer0

Things we want to optimize

- Layer0
 - radius

 - intrinsic resolution
 material budget
 Impact on L0 technology
- Acceptance angular coverage
 - heavily constrained by the machine
- Outer layers
 - radius
 - \succ no support tube (as in Babar)
 - geometry
 - \succ smaller boost ($\beta\gamma=0.28$ instead of 0.56)
 - bending in outer layers
 - dE/dx capability \rightarrow decision on readout electronics

Figures of Merit, Decay Modes

- How do we decide what is optimal? Define Figures Of Merit (FOM).
 - vertex resolution: separation between two B decays: Δz or Δr (3-D separation)
 - efficiency (angular coverage)
 - PID for soft particles (dE/dx in SVT)
- Relevant decay modes:
 - vertex resolution: $B^0 \rightarrow \pi^+ \pi^-$ (cleaner), include highermultiplicity modes, e.g. $B^0 \rightarrow \eta' K_s$
 - acceptance: missing energy, high-multiplicity
 - > LFV mode $\tau \rightarrow \mu \gamma$: not time-dependent, but vertexing could be important means of background suppression
 - dE/dx: soft pions from $D^{*+} \rightarrow D^0 \pi^+$ decay

Preliminary Studies

- Nicola Neri has already performed a number of preliminary studies relating to Layer0.
 - material budget
 - resolution
 - radius
- Used Babar fast simulation (<u>PravdaMC</u>)
- See Nicola's talk later

Dependence of Vtx resolution on tag side on radius, material

<u>A good start</u>: need to amplify and systematize

J. Walsh SuperB Computing Mini-Workshop

Simulation Tools

- Babar fast simulation: Pravda
 - interfaced to Babar event generator and physics analysis modules
 - Is simulation accurate enough for our needs?
 - Nicola will say more
- If not Pravda, what?
 - GEANT-based simulation
 - > adapt from Babar simulation
 - ✓ see Fabrizio's talk later
 - start from scratch
 - Keep Pravda idea, but improve on it
 - > more realistic simulation
 - geometry definition
 - ≻ etc.

Would be quite challenging given time constraints

Infrastructure

- Detector studies generally have modest computing requirements:
 - any given point in optimization typically needs only a few thousand events
 - assuming fast simulation → no need to persist simulated events → limited disk space needs
 - ditto for CPU requirements
- Going to something more CPU-intensive like GEANT will change this picture
 - will need to evaluate when we have a clearer picture of CPU demands

- Development of algorithms
 - exploit superior characteristics of SuperB vertex detector

tracking:optimization of Ks reconstruction alg's
 vertexing: B/D vertex separation
 BG rejection capability of SVT

- Bookkeeping
 - not necessarily for data sets, but, e.g., detector configurations

> see talk by Igor Gaponenko later this morning

Summary

- Need simulation tool to optimize parameters of SuperB SVT on TDR time scale
 - parameters to optimize
 - figures of merit
- Initial studies
 - used Babar fast simulation (Pravda)
 - reasonable but perhaps we can do better
- Infrastructure requirements modest (assuming fast simulation)
- Algorithm development → exploit improved performance compared to Babar SVT