
Gravitational Wave Data Analysis 
Introduction and new perspectives

Massimiliano Razzano 
University of Pisa & INFN-Pisa

INFN-Torino
 13 december 2019

         



Virgo (3 km)

LIGO-Hanford 
 (4 km)

LIGO-Livingston 
(4 km)

GEO (600 m)

KAGRA 

LIGO-India
(2022+) 

The era of advanced GW detectors

J. Payne, 1798

M. Razzano



 Abbott et al. 2019 “Observing scenario” paper, LRR

3

Why go to the Advanced detectors?

Significant upgrade to increase sensivitity by 10x
Wrt “previous generation” LIGO and Virgo (2010s’)

This means 10x distance reach 
→ 103x larger volume

 → 103 number of events

Extremely tiny signals
Arm deformation  ~10-18 m
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The era of Advanced GW detectors

We are 
here



The first GW catalog of transients

GWTC-1
Abbott et al 2019, arXiv:1811.12907



Open Public Alerts

 EM alerts are public now
 Public alerts user guide 

 https://emfollow.docs.ligo.org/userguide/
 Gravitational Wave Candidate Event Database (GraceDB) 

 https://gracedb.ligo.org/

https://emfollow.docs.ligo.org/userguide/


Latest from O3

~40 alerts, ~10 retractions
 Mostly Binary Black holes, 
 7 candidates binary neuron stars or 

neutron star-black hole binary
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Back to Einstein’s field equations...

Uyuni Train Cemetery 
(Bolivia)
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Einstein’s field equations

Geometric part 
(aka Einstein’s tensor G

mn
) 

=
Geometry of spacetime

Stress-Enery part 
(aka momentum-energy 

tensor)
=

Matter distribution 

Set of 10 equations
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Linearized equations

We can linearize the field equation and choose a proper gauge 
(Lorenz Gauge) + orientation (TT)
The Einstein’s equations become:

In vacuum (outside a source) T
mn

 = 0

In this case, solutions are plane waves

→ Gravitational waves!
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Gravitational waves

In this gauge we have just 2 components. 

The solutions reads as:

h
+
 and h

x 
are the gravitational wave polarizations

GWs propagate at the speed of light
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Gravitational waves Polarizations

Plus (+) polarization Cross (x) polarization 
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Sources of Gravitational waves

Far from the source (i.e. the “far” zone), we can connect the 
GWs generated from the source, with the mass distribution of 
the source

In particular, under condition of slow motion and weak field,
when we have a non-vanishing quadrupole momentum of the 
mass distribution, we have GW emission

G/c4 ~ 10-49 s2g-

2cm-1

1/r 
dependence



Expected sources detectable by LIGO/Virgo

Ott, C. 2009

LIGO 
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Coalescence of compact binary systems (NSs and/or BHs)
Known waveforms (template banks)
E

gw
~10-2 Mc2

Core-collapse of massive stars
Uncertain waveforms
E

gw
~10-8 – 10-4 Mc2

Rotating neutron stars
Quadrupole emission from star's asymmetry
Continuous and Periodic

Stochastic background
Superposition of many signals (mergers, cosmological, etc)
Low frequency
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The case of binary systems

 

System loses energy by GWs → orbital 
contraction!

Twice the frequency 
of the orbit
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Binary coealescence

Orbital decay → Closer orbit → Faster spin → More GW 
emission →Larger orbital decay

→Runaway process

f
dot,GW

 = k f
GW

11/3 

In some time, the 2 object will coalesce and merge 
(e.g. PSR B1916+13 in 300 Myr)

 



GW from chirp

We define phase as

Then the h(t) becomes (as usual, i is the inclination):
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Binary coealescence
Closer to the coalescence, GW amplitude and frequency increase → the 
so-called chirp
 No longer easy to model as point sources
 After the merger, the final object (e.g. a BH) will undergo a ringdown 

phase

 

M. Favata/SXS/K. Thorne

Can we use
This information?
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Signals buried in noise

GW151226

Low signals + high noise
→ Detection
→ Characterization 
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Random processes

Sequence of random variables
Instrumental noise is an example of random process timeseries x(t)

If we know the probability density function p(x), we can evaluate the expectation value:

If the statistical properties of the signal do not change, we say it is stationary, and

Statistical ensemble average 
= 

Long time average
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Random processes
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Power Spectrum

We can evaluate the average of x2(t)

Windowed signal

Parseval’s Theorem

x(t) is real → symmetry:

Power Spectral Density (PSD)
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Power Spectrum

The definition of S(f) becomes:

The amplitude spectral density (ASD) is the sqrt of PSD



*

Power Spectrum
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Optimal detection filter 

We want to test against null hypothesis (H0=No signal)
Using Bayes theorem one can calculate the likelihood ratio under assumption
Of gaussian noise. 

Likelihood depends monotonically on (s,h), therefore we call it optimal statistic 

Also called this matched filter 
(a noise-weighted correlation of anticipated signal with data)
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An example of matched filter 



GW open data on the web

Hosted at the Gravitational Wave Open Science Center (GWOSC)
https://www.gw-openscience.org/



Released data

GWOSC provides two main types of data

GW related to events (e.g. Binary Black Holes, etc)
 About 1-hour window centered on the event(s)
 Released with the publication of the event(s)
 GW Strain data, size ~Gb

GW “bulk” data
 Bulk datasets of each observing run (size ~Tb)
 Releases after 18 months from the end of the run
 Data blocks of 6 months, released every 6 months
 First chunck of O3 will come in April 2021

Supporting documentation and tools
 Help the external community in using data
 Lots of tutorials
 Materials from periodic Open Data Workshops (Last one this April in 

Paris)



GW data products

Releases include GW strain, data quality and injections
 Timeseries
 Various formats, including standard “frame” files (GWF) and HDF5

Available Releases

LIGO 
 S5 (2005 - 2007) 
 S6 (2009 – 2010)

Advanced LIGO
 O1 (2015 – 2016)
 O2 (2016 – 2017)

Advanced Virgo
 O2 (2016 – 2017)

GW strain

h(t) ~ DL/L



Timelines

 Information on data availability over time



Timelines – example from O2



Strain data – Catalogs

Previously, each event published separately, now included in catalogs
 https://www.gw-openscience.org/catalog/ 

GWTC-1
 Released in Dec 2018 (arXiv:1811.12907)
 11 confident detections + 14 marginal triggers
 Strain data + skymaps, etc...



Strain data – Catalogs



Strain data – Single events

each file:
 Metadata
 GW strain
 Data quality (1 Hz rate) 



Bulk data

Available in 2 ways

CernVM FS
i.e. mount a 
network disk on your 
PC

Search 
archive



Detector status





LIGO-Virgo alerts



LIGO-Virgo alerts

Www.gracedb.org
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How to run analysis on your own?
Standard routines have been published in Python-based software packges, some 
of them publicly available

www.pycbc.org

www.gwpy.org
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The gwpy Package

Strain data
h(t)
4KHz 

Data Quality Segments

1 Hz 



Building the ASD



Interferometers are producing lots of data everyday
Order of ~50 MB/s → about 0.5 TB/day from ~103-105 channels
Signals are buried in a high noise

Big data stimulates use of machine learning methods for 2 main 
reasons:

– Shorter timescales
– Detector characterization
– Detection and quick localization
– Low-latency analysis for quick EM alert

– Longer timescales
• Search for new sources (not just CBC but also CW etc)

 

Gravitational Waves and Big Data



Developed to combine pattern recognition + artificial intelligence
Recent Reinassance due to more computing power

Intro to machine learning



Intro to machine learning
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 In principle, a deep network can 
approximate any continuous 
function (universal approximation)

Various projects in progress in 
LIGO/Virgo to apply machine 
learning to grawitational waves. 
Many at this workshop!

Why Deep Learning?

Deep Learning (DL) is at the frontier of machine learning studies
 Born from works on neural networks and artificial intelligence

 It combines neural network architecture & power of machine learning
The building block is the artificial neuron (perceptron), acting as a nonlinear 

processing unit
A single perceptron → multilayer network of perceptrons (i.e. “deep”)



Looks like a very promising approach due to data space complexity
Can be applied to various aspects, from detection of new sources to 

characterization of the detector

Deep learning for Gravitational waves

George & Huerta, 2018 Gabbard et al 2019



Interferometers are limited by stationary and nonstationary noise

Transient noise events (glitches) can impact data quality and mimic real 
astrophysical signals

Detect and classify glitches is one of the most important tasks for detector 
characterization and data analysis (e.g. low-latency & detector 
optimization)

Glitches can have complex time-frequency signatures → difficult to classify 
manually

Automatic methods have been tested (e.g. Powell+15, CQG,32,215021, 
Mukund+17,PRD,95,104059)

Many groups working on this in the LVC, already various publications!

Deep learning for glitch characterization & classification



Www.gravityspy.org

Needs for a training set
Citizen scientists contribute to classify glitches
 
More details in Zevin+17 
 

Glitch & Citizen science: GravitySpy

“whistle” glitch

http://Www.gravityspy.org/


Examples of time-frequency glitch morphology (Zevin+17)

Sample glitch gallery

Blip glitches

Whistle glitches
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Sample glitch gallery

Helix glitches

Koi fish glitches
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Promising tool to classify complex patterns
Deep network to approximate a classification function
 In our case, the function is:

 GW data →  glitch class
We focus on images 

– Easy to spot signal “types” (training)
– Compress long data stream (time-frequency)
– Preprocessing stage → Image recognition techniques

Fully connected deep neural networks are CPU expensive
We exploit Convolutional deep Neural Networks (CNNs)

 Designed to extract features
 Optimized for image classification

Deep Learning & glitches

Work in collaboration with E. Cuoco 

– 



Ad hoc simulations for tests (e.g. Powell+2015)
Simulate colored noise using public sensitivity curve
6 classes of glitch shapes (+ NOISE one to check detection)

Tests on simulations (I)

Example of 
H1 
simulation



2k glitches per family
Class for signals 
Spectrogram for each image 
2-seconds time window 
to highlight fatures in long glitches
(if needed, can use multi-window)
Data is whitened
Optional contrast stretch

Building the images



 Input GW data 
 Timeseries whitening (See Elena Cuoco’s talk)
 Image processing
 Image creation from time series (FFT or Q transform)
 (if needed) Image equalization & contrast enhancement

Classification
 A probability for each class, take the max
 Add a NOISE (i.e. no glitch) class to check detection

Network layout
 Tested various networks:

 Shallow
 1 CNN block
 3 CNN blocks

Run on GPU Nvidia GeForce (GTX 780/Titan Xp) 
 Python + CUDA-optimized libraries

 Keras+Tensorflow+etc

Developing the CNN architecture



Normalized Confusion Matrix

Confusion matrices 

Deep CNN

SVM

Deep CNN better at distinguishing 
similar morphologies



Some cases of more glitches in the time window, always identify the right class

Picking & classifying glitches 

100% Sin-Gauss

More details in 
Razzano & Cuoco 2018, CQG,35,9 
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Move to the real data: O1 run

Glitch name # in H1 # in L1

Air compressor 55 3

Blip 1495 374

Chirp 34 32

Extremely Loud 266 188

Helix 3 276

Koi fish 580 250

Light Modulation 568 5

Low_frequency_burst 184 473

Low_frequency_lines 82 371

No_Glitch 117 64

None_of_the_above 57 31

Paired doves 27 -

Power_line 274 179

Repeating blips 249 36

Scattered_light 393 66

Scratchy 95 259

Tomte 70 46

Violin_mode 179 -

Wandering_line 44 -

Whistle 2 303

Dataset from GravitySpy images



 
Confusion 
(or confusing?) 
matrix

Classification results 

1 CNN block



Classification results 

Full CNN stack

Consistent with 
Zevin+2017



Conclusions and next steps

 Machine and deep learning methods are growing fast in GW 
community

 We have tested and developed image-based deep learning for 
classification of noise glitches

 Time-frequency images as input data
 Tested on simulations, real data and output of other pipelines
 Starting from image mapping, we developed a multichannel 

approach
 All methods and pipelines under testing in order to be ready for O3







Backup



 Discovered in 1978
 Distance 6.4 kpc
 P=7.7 h
 P pulsar 59 ms
 Orbital decay of 3.5 m/yr, or 

76.5 us/year
  
 Nobel Prize on Physics 1993:  

R. A. Hulse e J. H. Taylor

The case of binary system PSR1916+13

First indirect proof of Gravitational Waves !
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The picnic problem

Picnic planned, but the sky is cloudy

 50% of rainy days start cloudy
 Cloudy mornings are common (40%)
 This is a dry month (usually 10% rain)

What is the chance of rain?
A=cloud
B=rain

P
rain

 = 0.1

Pclouds given rain  = 0.5

P
cloud

 = 0.4

→ P = 0.12
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Completeness relationship

P of not B

Likelihood ratio

Using the Odd Ratios:

Where O(B) = P(B)/P(--B)
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Testing CNN on standard images

Deer (4)

Dataset:
 CIFAR-10
 60k 32x32 images
 10 classes

CNN implementation
 Python(Keras+TensorFlow)
 Run on GPU



Tests on simulations (II)

To show the glitch timeseries 
here we don’t show the noise 
contribution

Examples of simulated 
timeseries



Simulated time series with 8kHz sampling rate
Glitches distributed according to Poisson statistics
2000 glitches per each family
Glitch parameters random to achieve various shapes and Signal-To-

Noise ratio

Tests on simulations (II)



Datasets of 14k images
Training:validation:test → 75:15:15
Image size 241 x 513 pixels
Depending on memory constraints, image size are reduced
Perform grid search to tune hyperparameters
Training time ~ few hrs for ~100 epochs 
Classification on the fly (~1 ms/image)

Training the CNN



We checked performances of different architectures (including a baseline one)

Classification results – metrics

Linear Support Vector Machine

CNN with 1 hidden layer

CNN with one block
(2 CNNs+Pooling&Dropout)

Deep 4-blocks CNNs
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Sample classification results



Preparing for O3
Pipeline tested and CNN trained

 Prepare to run continuosly on data
 Test on stretch of O1 public data

 Used 1 week from GPS 1132704017, SNR>10 
 ~4500 glitches

 Pick the glitches and classify them
 Check against LIGO-DB classes



Preparing for O3

Other random examples



Preparing for O3
Compare with the classes in the DB



Preparing for O3
Sometimes a slight mismatch (as found in simple display)

Average 
classification
probability ~0.7-0.8



Exploring “None of the above”

Low classification 
probabilities, as expected



Repeat with more statistic

Confusion matrix



Interfacing with WDF pipeline
Apply the learned model to the glitches found with an external pipeline,e.g. the 
Wavelet Detection Filter pipeline (see Elena Cuoco’s talk)
Same GPS time, sample of ~1800 glitches

How good is the classification? 



Interfacing with WDF pipeline
Study the distribution and mean classification probability across classes

Classifiction 
looks good 



Glitches and multichannel images 
 For some glitch classes origin is unknown (e.g. blips)

 Goal: estimate how important is a channel in the formation of a glitch
 Method

 Identify a list of glitches (e.g. omicron, etc)
 Select list of auxiliary channels and get timeseries
 Condition timeseries

 Rank them according to a “importance” figure
 We started from representing multichannel FFT as images..

Work by K. Mogushi, MR, M. Cavaglià, G. Nicolini, G. Cella
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Gaussian Noise

Noise time series of N points (duration T, sampling dt) 
with every x

i
 is random Gaussian (e.g. mean = 

0,variance=1)

We call it Gaussian noise.
The joint probability of all time series is:

The limit to the continuum

Psd represent a white noise. In fact:
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Optimal detection filter 

We test the H
1
 hypothesis (signal) vs the null Hypothesis H

0
 (no signal)

→ H1 = not H0

So, if B = H
1
 and A = s(t), we can compute the odds ratio O(H

1
|s)

We can use O(H
1
|s) = O(H

1
)(H

1
|s) 

No dependence on the data

Likelihood ratio

For H
0
 : For H

1
 : 

(If noise n(t) = s(t)-h(t) is 
Gaussian )
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Optimal detection 

We need a way to evaluate the presence of a signal in the data.
n(t): noise
h(t): signal

s(t) = n(t)+h(t) : recorded signal

We test these hypotheses

H0 (Null Hypothesis) = “no signal”, i.e. s(t) = n(t)
H1 (Alternative) = “signal”, i.e. s(t) = n(t)  + h(t)

We can compute the ratios between P(H1) and P(H0), given the recorded data s(t)

This is something that we can address with Bayes Theorem
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Bayes Theorem (I) 

P that A is true given B Joint probability (A and B)

As well as:

This leads to Bayes theorem:

Posterior

Evidence

Posterior

Prior P of A given 
B
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Optimal detection filter 

We test the H
1
 hypothesis (signal) vs the null Hypothesis H

0
 (no signal)

→ H1 = not H0

So, if B = H
1
 and A = s(t), we can compute the likelihood ratio

Likelihood ratio

For H
0
 : For H

1
 : 

(If noise n(t) = s(t)-h(t) is 
Gaussian )
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Optimal detection filter 

The likelihood becomes

(s,h) Only dependence from data

Likelihood depends monotonically on (s,h), therefore we call it optimal statistic 

Also called this matched filter 
(a noise-weighted correlation of anticipated signal with data)
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