

Thermodynamic quark susceptibilities in the PNJL model

PhysRevD.81.114017

Marco Cristoforetti

ECT* Technische Universität München

> T. Hell, B. Klein and W. Weise

Technische Universität München

LATTICE2010 - Villasimius - 6|15|10

Introduction Incloques

The sign problem

$$\det(\not\!\!\!D + \mu\gamma_0 + m) = e^{i\theta} |\det(\not\!\!\!D + \mu\gamma_0 + m)|$$

If the average phase factor vanishes in the thermodynamic limit, Monte-Carlo simulations are not possible

To overcome the obstacle:

 \bigcirc Taylor expansion: thermodynamic potential expanded in μ around 0

$$P(T, \mu_u, \mu_d) = \sum_{n_u, n_d} \frac{1}{n_u! n_d!} \chi_{n_u, n_d}(T) \mu_u^{n_u} \mu_d^{n_d}$$

Studying the radius of convergence of the expansion is possible to give an **estimate** of the critical point.

Introduction

Taylor expansion with models

$$P(T, \mu_u, \mu_d) = \sum_{n_u, n_d} \frac{1}{n_u! n_d} \chi_{n_u, n_d}(T) \mu_u^{n_u} \mu_d^{n_d}$$

The predictions of the expansion coefficients are sensitive to effects beyond mean field.

The model includes the correct degrees of freedom to describe the phase transition

MONTE CARLO PNJL MODEL

PNJL model BATT MODE

PNJL

NJL

Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122,345

Gauge fields are integrated out from the QCD partition function

Four fermion interaction: chiral symmetry is spontaneously broken

PNJL

K. Fukushima, PRD 68, 045004 C. Ratti, M. Thaler and W Weise PRD 73, 014019

In pure gauge QCD the Polyakov loop is a good order parameter for de-confinement

Introduce the Polyakov Loop into the NJL model via a Landau-Ginzburg effective potential for Φ , Φ^*

Effects connected with confinement appear

$$\mathcal{L}_{NJL} = \bar{\psi}(\not{p} - m_0)\psi - g(\bar{\psi}\gamma^{\mu}\lambda_a\psi)(\bar{\psi}\gamma_{\mu}\lambda_a\psi)$$
$$\mathcal{Z} = \mathcal{N}\int \mathcal{D}\phi \mathcal{D}\sigma \mathcal{D}\vec{\pi} \det[S^{-1}(\sigma,\pi,\beta)]\exp\left[-\beta\int d^3x\left(\frac{\sigma^2 + \pi^2}{2G}\right)\right]$$

$$\frac{\mathcal{U}(\Phi, \Phi^*, T)}{T^4} = -\frac{1}{2}a(T)\Phi^*\Phi + b(T)\ln[1 - 6\Phi^*\Phi + 4(\Phi^{*^3} + \Phi^3) - 3(\Phi^*\Phi)^2]$$
$$a(T) = \sum_{i=0,3} a_i T^i$$

$$\mathcal{Z} = \mathcal{N} \int \mathcal{D}\phi \mathcal{D}\sigma \mathcal{D}\vec{\pi} \det[S^{-1}(\phi, \sigma, \pi, \beta)] \exp\left[-\beta \int d^3x \left(\mathcal{U}(\phi, \beta) + \left(\frac{\sigma^2 + \pi^2}{2G}\right)\right)\right]$$

The effective potential is a function of A_3 and A_8

mean field PNJL

$$\mathcal{Z} = \mathcal{N} \int \mathcal{D}\phi \mathcal{D}\sigma \mathcal{D}\vec{\pi} \, \det[S^{-1}(\phi, \sigma, \pi, \beta)] \exp\left[-\beta \int d^3x \left(\frac{\mathcal{U}(\phi, \beta)}{2G} + \left(\frac{\sigma^2 + \pi^2}{2G}\right)\right)\right]$$

mean field PNJL: susceptibilities

$$\Omega(T,\mu) = \frac{1}{VT^3} \ln \mathcal{Z} = \sum_{i,j=0}^{\infty} \chi_{i,j}(T) \left(\frac{\mu_u}{T}\right)^i \left(\frac{\mu_d}{T}\right)^j$$

$$\chi_{i,j}(T) = \frac{1}{i!j!} \left. \frac{\partial^{i+j}\Omega}{\partial(\mu_u/T)^i \partial(\mu_d/T)^j} \right|_{\mu_{u,d}=0}$$

Partition function depends from μ through the fermionic determinant

$$\mathcal{Z} = \mathcal{N} \int \mathcal{D}\phi \mathcal{D}\sigma \mathcal{D}\dot{\tau} \det[S^{-1}(\mu_u, \mu_d)] \exp\left[-\beta \int \mathrm{d}^3x \left(\mathcal{U}(\phi, \beta) + \left(\frac{\sigma^2 + \pi^2}{2G}\right)\right)\right]$$

$$S^{-1} = \begin{pmatrix} -\partial \!\!\!/ + (\mu_u - iA_4)\gamma_0 + i\gamma_5 \pi^0 - M & i\gamma_5 \pi^+ \\ i\gamma_5 \pi^- & -\partial \!\!\!/ + (\mu_d - iA_4)\gamma_0 + i\gamma_5 \pi^0 - M \end{pmatrix}$$

mean field PNJL: susceptibilities

$$\chi_{i,j}(T) = \frac{1}{i!j!} \left. \frac{\partial^{i+j}\Omega}{\partial(\mu_u/T)^i \partial(\mu_d/T)^j} \right|_{\mu_{u,d}=0}$$

Monte-Carlo PNJL Nouce-Carlo BMI

PNJL in a box

$$\mathcal{Z} = \int \mathcal{D}\phi \mathcal{D}\sigma \mathcal{D}\pi \exp\left[\beta V \frac{1}{2} \sum_{n} \int \frac{\mathrm{d}^{3} p}{(2\pi)^{3}} \mathrm{Tr} \ln[S^{-1}(i\omega_{n}, \vec{p})] - \beta V \left(\mathcal{U}(\phi, \beta) + \left(\frac{\sigma^{2} + \pi^{2}}{2G}\right)\right)\right]$$

New parameter V

Monte-Carlo method to compute the partition function

$$\sigma^{j} = \sigma^{i} + \delta_{\sigma} \cdot r()$$

$$\pi^{j} = \pi^{i} + \delta_{\pi} \cdot r()$$

$$\phi_{3}^{j} = \phi_{3}^{i} + \delta_{\phi_{3}} \cdot r()$$

$$\phi_{8}^{j} = \phi_{8}^{i} + \delta_{\phi_{8}} \cdot r()$$

Fixing the volume

Calculations performed at different volume size V

$$a = \frac{1}{N_t T} \rightarrow V = N_s^3 a^3 = \frac{N_s^3}{N_t^3 T^3} \qquad \qquad N_s = 4N_t \rightarrow V = \frac{64}{T^3}$$

Order parameters

The effect of fluctuations is negligible for the Polyakov loop

Only small corrections for the chiral condensate

Chiral susceptibility

$$\begin{split} \chi_{\overline{\psi}\psi} &= \frac{T}{V} \frac{\partial^2}{\partial m^2} \ln \mathcal{Z} \\ &= \frac{V}{T} \Big[\Big\langle \frac{\partial \ln \det M[m,T,f,A]}{\partial m}^2 \Big\rangle - \\ & \Big(\Big\langle \frac{\partial \ln \det M[m,T,f,A]}{\partial m} \Big\rangle \Big)^2 \Big] + \\ & \Big\langle \frac{\partial^2 \ln \det M[m,T,f,A]}{\partial m^2} \Big\rangle \end{split}$$

Off-diagonal 2nd moment of the pressure 3ug moment of the blessfile Oll-gigoug

Definitions
$$\chi_{ud} = \frac{T^2}{VT^3} \frac{\partial^2}{\partial \mu_u \partial \mu_d} \ln \mathcal{Z}$$

$$\mathcal{Z} = \int \mathcal{D}\phi_3 \mathcal{D}\phi_8 \mathcal{D}\sigma \mathcal{D}\vec{\pi} \left(\exp\left[\beta V \sum_n \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \ln \det[M(\phi_3, \phi_8, \sigma, \vec{\pi}; T, \mu_u, \mu_d; i\omega_n, \vec{p})] - \exp\left[\beta V \left(\mathcal{U}(\phi_3, \phi_8; \beta) + \left(\frac{\sigma^2 + \vec{\pi}^2}{2G}\right)\right)\right] \right)$$

$$\frac{\partial^2}{\partial \mu_u \partial \mu_d} \ln \mathcal{Z} = \frac{V}{T} \left\langle \frac{\partial^2}{\partial \mu_u \partial \mu_d} \ln \det[M(f;T,\mu_u,\mu_d)] \right\rangle \\ + \left(\frac{V}{T}\right)^2 \left\langle \left(\frac{\partial}{\partial \mu_u} \ln \det[M(f;T,\mu_u,\mu_d)]\right)^2 \right\rangle \\ - \left(\frac{V}{T}\right)^2 \left(\left\langle \frac{\partial}{\partial \mu_u} \ln \det[M(f;T,\mu_u,\mu_d)]\right\rangle \right)^2 \right\rangle$$

Mean Field: comparison with lattice data

Conclusions

Conclusions and Outlook

Monte-Carlo PNJL

Order parameters calculated using Monte-Carlo close to MF result

Zero mode fluctuations are taken into account

Off-diagonal moment of the pressure can be calculated

In agreement with ChPT and lattice calculations

Outlook

Move to non-local PNJL model in 2+1 flavor

thank **you**