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IntroductionIntroduction



Taylor expansion: thermodynamic potential expanded in μ around 0

Introduction

det( /D + µγ0 + m) = eiθ|det( /D + µγ0 + m)|

If the average phase factor vanishes in the thermodynamic 
limit, Monte-Carlo simulations are not possible !

P (T, µu, µd) =
�

nu,nd

1
nu!nd!

χnu,nd(T )µnu
u µnd

d

Studying the radius of convergence 
of the expansion is possible to give 
an estimate of the critical point.

The sign problem

To overcome the obstacle:
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Introduction

Taylor expansion with models

The predictions of the expansion coefficients are sensitive to 
effects beyond mean $eld.

if we reproduce Lattice data
MONTE CARLO

 PNJL 
MODEL

The model includes the correct degrees of 
freedom to describe the phase transition



PNJL modelPNJL model



PNJL

Gauge !elds are integrated out 
from the QCD partition function

Four fermion interaction: 
chiral symmetry is spontaneously broken

No con!nement

LNJL = ψ̄(/p−m0)ψ − g(ψ̄γµλaψ)(ψ̄γµλaψ)

In pure gauge QCD the Polyakov loop 
is a good order parameter for de-con!nement 

Introduce the Polyakov Loop into the NJL model
via a Landau-Ginzburg effective potential for Φ, Φ*

Effects connected with con!nement appear

U(Φ,Φ∗, T )
T 4

= −1
2
a(T )Φ∗Φ + b(T ) ln[1− 6Φ∗Φ + 4(Φ∗3
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NJL
Y. Nambu and G. Jona-Lasinio, 
Phys. Rev. 122,345

  PNJL
K. Fukushima, PRD 68, 045004
C. Ratti, M. Thaler and W Weise PRD 73, 014019



PNJL

The effective potential

mass term integration over non-diag gluonic 
degrees of freedom

The effective potential is a function of A3 and A8

Considering: 

CONSTANT Aµ(x) = δµ4(t3A4
3 + t8A

4
8)

we have: 

POLYAKOV LOOP
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U(Φ,Φ∗, T )
T 4

= −1
2
a(T )Φ∗Φ + b(T ) ln[1− 6Φ∗Φ + 4(Φ∗3

+ Φ3)− 3(Φ∗Φ)2]



Polyakov loop extended NJL (PNJL)

Substitute the Matsubara frequencies ωn by ωn + A4
! Formal substitution µ → µ − iA4 after Matsubara summation

ΩMF = ΩNJL|µ→µ−iA4
+ U(Φ,Φ∗,T )

Joint crossover of 〈Φ〉 and 〈q̄q〉

NJL
!chiral limit"

PNJL

pure

gauge

1st order2nd order
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mean $eld PNJL: susceptibilities

PNJL

Partition function depends from μ through the fermionic determinant
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mean $eld PNJL: susceptibilities

PNJL
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Isovector moments in agreement with lattice data as well

Lattice data: Allton et al. [A+05], Bielefeld-Swansea coll.
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C.R. Allton et al. PRD 71, 054508
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FIG. 8: Scaled pionic contribution to the off-diagonal susceptibility compared with the ChPT prediction. All Monte-Carlo
PNJL results are multiplied by the volume Vk/V64 and therefore scale with the k = 64 curve, using Eq. (37).

component of the Polyakov loop field, this behavior is just what one expects from Eq. (37). At the same time one
would expect that lattice simulations performed ideally with physical quark masses would actually yield even larger
magnitudes of χud than those with mπ = 230 MeV. The Monte-Carlo results notably include only the pionic zero
modes. Finite-momentum fluctuations would tend to further increase the pionic effects in χud.

In the infinite-volume limit, only the gauge field signal (plus possible finite-momentum pionic modes) survives in
χud, as pointed out earlier. It would be interesting to see whether this predicted behavior is realized in lattice QCD
when moving towards larger values of the ratio Ns/Nt.

0.5 1 1.5 2
-0.1

-0.08

-0.06

-0.04

-0.02

0

MC-PNJL

Lattice 

Lattice 

!
ud

T/Tc

m"=0.139 GeV

m"=0.770 GeV

m"=0.230 Gev

FIG. 9: Temperature dependence of the flavor off-diagonal susceptibility χud in the Monte-Carlo approach to the PNJL model,
using k = 64 (LT = 4). Lattice data [29, 30] with the same volume aspect ratio LT and different pion masses are also shown
for orientation.

VII. CONCLUSIONS

Spontaneous chiral symmetry breaking and confinement are well-known phenomena emerging in the study of QCD
thermodynamics. Both these features are incorporated in the Polyakov-loop extended Nambu–Jona-Lasinio (PNJL)
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mean $eld PNJL: susceptibilities

PNJL

χi,j(T ) =
1

i!j!
∂i+jΩ

∂(µu/T )i∂(µd/T )j

����
µu,d=0

At the mean !eld level the second 
non-diagonal coefficient is zero:

The expectation value of π and A8 
is zero for μ=μI=0

S−1 =
�

s11(µ, µI , φ,σ) iγ5π
iγ5π s22(µ, µI , φ,σ)

�



Monte-Carlo PNJLMonte-Carlo PNJL



MC-PNJL

New parameter V

Z =
�
DφDσDπ exp

�
βV

1
2

�

n

�
d3p

(2π)3
Tr ln[S−1(iωn, �p)]− βV

�
U(φ, β) +

�σ2 + π2

2G
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PNJL in a box

x

φ V

zero mode !uctuations

Monte-Carlo method to compute 
the partition function

σj = σi + δσ · r()
πj = πi + δπ · r()
φj

3 = φi
3 + δφ3 · r()

φj
8 = φi

8 + δφ8 · r()



MC-PNJL

Fixing the volume

Calculations performed at different volume size V
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a =
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NtT
→ V = N3

s a3 =
N3

s

N3
t T 3 Ns = 4Nt → V =

64
T 3

Available Lattice data



MC-PNJL

Order parameters

Order parameters

The effect of %uctuations is negligible for the Polyakov loop

Only small corrections for the chiral condensate

7

V. MONTE-CARLO APPROACH TO THE TWO-FLAVOR PNJL MODEL

The starting point for studying the thermodynamics for Nf = 2 quark flavors is the partition function (11). The

degrees of freedom in this case are the A(3)
4 and A(8)

4 components of the gauge field, and the bosonic field variables σ
and �π. In the evaluation of the path integral, we need to fix the volume V as a function of the temperature. Looking
back at Eq. (14), we see that this requires fixing the dimensionless index LT = k1/3 of the Euclidean volume. In this
work we consider six different choices of k. The value k = 64 corresponds to the largest one currently used in lattice
simulations. In addition we consider k = 125, 250, 500, 1000, 2500. The ratio between the smallest and the largest
k is ∼ 40. In this way we can study systematically the dependence of the observables on the volume size at fixed
temperature T . In the NJL sector of the model we also need to specify the current quark mass m0, the coupling
constant G and the three-momentum cut-off Λ. The parameters used here are the ones of Refs. [12, 14]:

m0 = 5.5 MeV, G = 10.1 GeV−1, Λ = 650 MeV.

A. Chiral and deconfinement transitions

The principal aim of this work is to contribute to the investigation of the QCD phase diagram. In this section we
study how the chiral and deconfinement transitions are affected by the introduction of fluctuations around the mean
field in our Monte-Carlo PNJL approach. This is achieved by evaluating the chiral condensate and the Polyakov
loop expectation value for different volumes and comparing with the mean-field result in saddle point approximation.
This comparison is presented in Fig. 3. The presence of fluctuations does obviously not modify the behavior of the
Polyakov loop expectation value; the four different sets of data overlap perfectly. For the chiral condensate below
the critical temperature, we notice that there is in fact a non-trivial dependence on the temperature: the expectation
value of the field σ starts to decreases earlier for smaller k. This reflects a volume dependence that moves the chiral
transition temperature from Tσ = 254 MeV for k = 2500 to Tσ = 222 MeV for k = 64, as deduced from the following
analysis of the chiral susceptibility.
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FIG. 3: Dependence of the chiral condensate, �ψ̄ψ�T /�ψ̄ψ�0, and of the Polyakov loop expectation value �Φ� on the parameter
k = (LT )3 in a finite volume. Deviations from the mean-field result in the infinite-volume limit are manifest only for the chiral
condensate. The behavior of the Polyakov loop is completely unchanged.

B. Chiral susceptibility

The chiral susceptibility is sensitive to fluctuations in the fields and therefore provides a good test for the Monte-
Carlo evaluation of the PNJL model. In the infinite-volume limit, V → ∞, the Monte-Carlo calculation should recover
the saddle-point result. To perform this comparison, we also calculate the chiral susceptibility in the saddle-point
approximation.

lattice volume

mean !eld result



MC-PNJL

Chiral susceptibility

Chiral susceptibility

χψψ =
T

V

∂2

∂m2
lnZ

=
V

T

��∂ ln detM [m, T, f,A]
∂m

2�
−

��∂ ln detM [m, T, f,A]
∂m

��2�
+

�∂2 ln detM [m, T, f,A]
∂m2

�

Saddle point limit

8

The chiral susceptibility is defined as

χσ =
T

V

∂2

∂m2
0

lnZ(m0, T ), (20)

in terms of the partition function Z of Eqns. (10),(11). The second derivative is taken with respect to the quark mass
m0. Performing these derivatives leads to

χσ =
V

T

� 1

Z(m0, T )

�
DσD�πDA

�
∂ ln detS−1(m0, T,σ,�π, A)

∂m0

�2

e−S[σ,�π,A]

−
� 1

Z(m0, T )

�
DσD�πDA

∂ ln detS−1(m0, T,σ,�π, A)

∂m0
e−S[σ,�π,A]

�2�

+
1

Z(m0, T )

�
DσD�πDA

∂2 ln detS−1(m0, T,σ,�π, A)

∂m2
0

e−S[σ,�π,A]

=
V

T

���
∂ ln detS−1(m0, T,σ,�π, A)

∂m0

�2 �
−

�∂ ln detS−1(m0, T,σ,�π, A)

∂m0

�2�

+
�∂2 ln detS−1(m0, T,σ,�π, A)

∂m2
0

�
. (21)

This expression can now be evaluated using the Monte-Carlo algorithm. We use the position of the peak in the chiral
susceptibility as a measure for the chiral transition temperature Tσ. The results presented in Fig. 4 show that Tσ

moves toward its saddle point limit, Tσ ≈ 254 MeV (black points).
The mean-field numerical result is obtained by evaluating the thermodynamic potential in saddle-point approxima-

tion for current quark masses m0 in the range from 1 to 10 MeV and for different temperatures. The thermodynamic
potential is then interpolated and the second derivative is calculated numerically. The result is represented by the
solid curve in Fig. 5. The Monte-Carlo calculation approaches the mean-field limit when the volume is increased at
fixed temperature.
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FIG. 4: The chiral susceptibility as a function of temperature for different volume aspect ratios. We use the peak position as
a measure for the chiral transition temperature Tσ. The solid line shows the trajectory of the chiral transition temperature as
it rises with increasing volume.

The role of fluctuations in the Monte-Carlo calculation of the chiral susceptibility can be understood from Eq. (21).
The disconnected contribution (the term in the square brackets), vanishes in the infinite-volume limit since fluctuations
of the mean field contribute as ∼ 1/V :

�•2� − �•�2 → 0 as V → ∞, (22)

Because the prefactor V/T in Eq. (21) compensates the volume dependence of the leading fluctuation contributions, a
finite susceptibility results also in the limit V → ∞. Since additional contributions of fluctuations in the mean fields
are of higher order in 1/V , the saddle point approximation becomes exact in this limit.

lattice volume

9

0.8 0.9 1 1.1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 k=64
k=250
k=1000
k=2500
Saddle point

!
"

T/T"

FIG. 5: Chiral susceptibility as a function of T/Tσ: With increasing volume the Monte-Carlo results (open symbols) approach
the saddle-point mean field result (solid curve).

VI. NON-ZERO QUARK CHEMICAL POTENTIALS: TAYLOR EXPANSION

Dealing with non-zero quark chemical potentials µq in lattice QCD thermodynamics is notoriously difficult because
of the well-known fermion sign problem. A possible way of overcoming this problem is the Taylor-expansion approach.
Instead of performing an explicit calculation at µq �= 0, the thermodynamic potential is expanded in a Taylor series
in µq/T around zero chemical potential,

Ω(T, µ) =
1

V T 3
lnZ =

∞�

i,j=0

χij(T )
�µu

T

�i �µd

T

�j
, (23)

with

χij(T ) =
1

i!j!

∂i+jΩ

∂(µu/T )i∂(µd/T )j

����
µu=µd=0

, (24)

where only even terms survive due to CP symmetry. The coefficients χij(T ) are evaluated at µq = 0.
The comparison between lattice data and Monte-Carlo calculations for these coefficients in the PNJL model represent

an important test of this model. In particular the flavor non-diagonal coefficient χ11 that vanishes in the saddle point
approximation is of interest in this context: it is necessary to take fluctuations of the mean field into account in order
to obtain a non-vanishing result for χ11. Since the strength of fluctuations depends on the volume, we again evaluate
the Taylor coefficients for different volume sizes at each temperature, i.e. for different values of the parameter k.

A. Second order Taylor expansion coefficients and susceptibilities

The first derivative of the logarithm of the partition function gives

∂ lnZ(T, µu, µd)

∂µq
=

∂

∂µq
ln

�
DσD�πDA exp

�V
T
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V

T

�
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=
V

T

�∂ ln detS−1(T, µu, µd,σ,�π, A)

∂µq

�
. (25)
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Off-diagonal 2nd moment of the pressure

De#nitions

Off-diagonal 2nd moment of the pressure
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∂
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π=0 in MF!

Φ8=0 in MF!
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FIG. 8: Scaled pionic contribution to the off-diagonal susceptibility compared with the ChPT prediction. All Monte-Carlo
PNJL results are multiplied by the volume Vk/V64 and therefore scale with the k = 64 curve, using Eq. (37).

component of the Polyakov loop field, this behavior is just what one expects from Eq. (37). At the same time one
would expect that lattice simulations performed ideally with physical quark masses would actually yield even larger
magnitudes of χud than those with mπ = 230 MeV. The Monte-Carlo results notably include only the pionic zero
modes. Finite-momentum fluctuations would tend to further increase the pionic effects in χud.

In the infinite-volume limit, only the gauge field signal (plus possible finite-momentum pionic modes) survives in
χud, as pointed out earlier. It would be interesting to see whether this predicted behavior is realized in lattice QCD
when moving towards larger values of the ratio Ns/Nt.
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VII. CONCLUSIONS

Spontaneous chiral symmetry breaking and confinement are well-known phenomena emerging in the study of QCD
thermodynamics. Both these features are incorporated in the Polyakov-loop extended Nambu–Jona-Lasinio (PNJL)
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From Eq. (27) we observe that this expression is odd with respect to A8 and even in all other fields. As a consequence
the expectation value of such a term is zero when the functional integration on the domain of A8 is performed. This
implies that the third term in Eq. (26) vanishes.

Another crucial observation is that taking the mean field limit for the pion field, �π = ��π� = 0, Eq. (28) vanishes.
Consequently, χud vanishes altogether in the mean field approximation, independent of the temperature. Computing
the expectation values of Eqs. (27) and (28) using the MC-PNJL approach we include corrections induced by fluctu-
ations of the pionic and Polyakov loop fields. Moreover, the main contribution to the Eq. (28) is given by the pionic
fluctuations, whereas the Eq. (27) is non-zero mostly due to fluctuations of A8.

The pionic and A8 contributions to χud resulting from the MC-PNJL computation are shown in Fig. 7. Two
characteristic features are immediately apparent. First, the term involving pionic zero-modes is strongly volume
dependent and vanishes in the limit of infinite volume. Secondly, the term associated with fluctuations of the A8

gauge field is independent of the box size and survives in fact as the volume becomes infinitely large.
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FIG. 7: Different contributions to the off-diagonal susceptibility χ11 = χud for different volume ratios k computed in the
Monte-Carlo approach. Left panel: Contribution from pionic fluctuations, for which the volume dependence is large. Right
panel: Contribution from fluctuations of the A8 field, which show a negligible volume dependence.

B. Chiral effective Lagrangian

In order to better understand the role of the pionic fluctuations in the evaluation of χud, let us briefly digress and
study this issue in the context of chiral perturbation theory (ChPT).

For low temperatures and small values of the chemical potential, the physics is dominated by the effects of light
pions and we can describe the system in terms of an effective chiral Lagrangian. While not influenced by the baryon
number chemical potential, the pions do couple to the isovector chemical potential and its effect can be included in
this effective Lagrangian. The chemical potential enters into the QCD Lagrangian like the zeroth component of a
gauge field [33, 34]. When one promotes the global chiral flavor symmetry SU(2)L ×SU(2)R of the QCD Lagrangian
to a local symmetry, gauge invariance determines completely how the chemical potential must be implemented in the
effective chiral Lagrangian [35–37]. This Lagrangian has the form, expressed in terms of the chiral field Σ,
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τ3 = diag(1,−1) is the diagonal isospin generator. Inserting these expressions into the chiral effective Lagrangian (30)
allows to identify the terms depending on the isovector chemical potential:
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From Eq. (27) we observe that this expression is odd with respect to A8 and even in all other fields. As a consequence
the expectation value of such a term is zero when the functional integration on the domain of A8 is performed. This
implies that the third term in Eq. (26) vanishes.

Another crucial observation is that taking the mean field limit for the pion field, �π = ��π� = 0, Eq. (28) vanishes.
Consequently, χud vanishes altogether in the mean field approximation, independent of the temperature. Computing
the expectation values of Eqs. (27) and (28) using the MC-PNJL approach we include corrections induced by fluctu-
ations of the pionic and Polyakov loop fields. Moreover, the main contribution to the Eq. (28) is given by the pionic
fluctuations, whereas the Eq. (27) is non-zero mostly due to fluctuations of A8.

The pionic and A8 contributions to χud resulting from the MC-PNJL computation are shown in Fig. 7. Two
characteristic features are immediately apparent. First, the term involving pionic zero-modes is strongly volume
dependent and vanishes in the limit of infinite volume. Secondly, the term associated with fluctuations of the A8

gauge field is independent of the box size and survives in fact as the volume becomes infinitely large.
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FIG. 7: Different contributions to the off-diagonal susceptibility χ11 = χud for different volume ratios k computed in the
Monte-Carlo approach. Left panel: Contribution from pionic fluctuations, for which the volume dependence is large. Right
panel: Contribution from fluctuations of the A8 field, which show a negligible volume dependence.

B. Chiral effective Lagrangian

In order to better understand the role of the pionic fluctuations in the evaluation of χud, let us briefly digress and
study this issue in the context of chiral perturbation theory (ChPT).

For low temperatures and small values of the chemical potential, the physics is dominated by the effects of light
pions and we can describe the system in terms of an effective chiral Lagrangian. While not influenced by the baryon
number chemical potential, the pions do couple to the isovector chemical potential and its effect can be included in
this effective Lagrangian. The chemical potential enters into the QCD Lagrangian like the zeroth component of a
gauge field [33, 34]. When one promotes the global chiral flavor symmetry SU(2)L ×SU(2)R of the QCD Lagrangian
to a local symmetry, gauge invariance determines completely how the chemical potential must be implemented in the
effective chiral Lagrangian [35–37]. This Lagrangian has the form, expressed in terms of the chiral field Σ,
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τ3 = diag(1,−1) is the diagonal isospin generator. Inserting these expressions into the chiral effective Lagrangian (30)
allows to identify the terms depending on the isovector chemical potential:

L =
f2
π

4
Tr

�
∂νΣ∂νΣ

†�+ f2
π

2
µITr

�
(∂0Σ)Σ

†τ3 + Σ†(∂0Σ)τ3
�

+
f2
π

2
µ2
ITr

�
τ3Στ3Σ

† − 112
�
− mΣ̄

4
Tr

�
Σ+ Σ†� (32)



χud = −T

V

2
T 2

1
m2

π

= −2
k

T 2 1
m2

π

mπ(T ) = mπ

�
1 +

1
2Nf

g1(m2
π, T, L)
f2

π

+O(p4)
�

g1(m2
π, T, L) =

1
(4π)2

� ∞

0
dλr−3

�

n �=0

exp(−m2
πλ− n2/(4λ))

n = (n1L, n2L, n3L)

Off-diagonal 2nd moment of the pressure

Role of pions 
from ChPT

δA8=0 δπ≠0

MC calculations agree with ChPT
in the range of validity of 
the theory 

11

From Eq. (27) we observe that this expression is odd with respect to A8 and even in all other fields. As a consequence
the expectation value of such a term is zero when the functional integration on the domain of A8 is performed. This
implies that the third term in Eq. (26) vanishes.

Another crucial observation is that taking the mean field limit for the pion field, �π = ��π� = 0, Eq. (28) vanishes.
Consequently, χud vanishes altogether in the mean field approximation, independent of the temperature. Computing
the expectation values of Eqs. (27) and (28) using the MC-PNJL approach we include corrections induced by fluctu-
ations of the pionic and Polyakov loop fields. Moreover, the main contribution to the Eq. (28) is given by the pionic
fluctuations, whereas the Eq. (27) is non-zero mostly due to fluctuations of A8.

The pionic and A8 contributions to χud resulting from the MC-PNJL computation are shown in Fig. 7. Two
characteristic features are immediately apparent. First, the term involving pionic zero-modes is strongly volume
dependent and vanishes in the limit of infinite volume. Secondly, the term associated with fluctuations of the A8

gauge field is independent of the box size and survives in fact as the volume becomes infinitely large.
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B. Chiral effective Lagrangian

In order to better understand the role of the pionic fluctuations in the evaluation of χud, let us briefly digress and
study this issue in the context of chiral perturbation theory (ChPT).

For low temperatures and small values of the chemical potential, the physics is dominated by the effects of light
pions and we can describe the system in terms of an effective chiral Lagrangian. While not influenced by the baryon
number chemical potential, the pions do couple to the isovector chemical potential and its effect can be included in
this effective Lagrangian. The chemical potential enters into the QCD Lagrangian like the zeroth component of a
gauge field [33, 34]. When one promotes the global chiral flavor symmetry SU(2)L ×SU(2)R of the QCD Lagrangian
to a local symmetry, gauge invariance determines completely how the chemical potential must be implemented in the
effective chiral Lagrangian [35–37]. This Lagrangian has the form, expressed in terms of the chiral field Σ,
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L =
f2
π

4
Tr

�
∂νΣ∂νΣ

†�+ f2
π

2
µITr

�
(∂0Σ)Σ

†τ3 + Σ†(∂0Σ)τ3
�

+
f2
π

2
µ2
ITr

�
τ3Στ3Σ

† − 112
�
− mΣ̄

4
Tr

�
Σ+ Σ†� (32)

13

0.2 0.4 0.6 0.8 1 1.2 1.4

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

k=64
k=125
k=250
k=500
k=1000
k=2500
ChPT

!ud

T/Tc

(")

V64 

_Vk

FIG. 8: Scaled pionic contribution to the off-diagonal susceptibility compared with the ChPT prediction. All Monte-Carlo
PNJL results are multiplied by the volume Vk/V64 and therefore scale with the k = 64 curve, using Eq. (37).

component of the Polyakov loop field, this behavior is just what one expects from Eq. (37). At the same time one
would expect that lattice simulations performed ideally with physical quark masses would actually yield even larger
magnitudes of χud than those with mπ = 230 MeV. The Monte-Carlo results notably include only the pionic zero
modes. Finite-momentum fluctuations would tend to further increase the pionic effects in χud.

In the infinite-volume limit, only the gauge field signal (plus possible finite-momentum pionic modes) survives in
χud, as pointed out earlier. It would be interesting to see whether this predicted behavior is realized in lattice QCD
when moving towards larger values of the ratio Ns/Nt.
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for orientation.

VII. CONCLUSIONS

Spontaneous chiral symmetry breaking and confinement are well-known phenomena emerging in the study of QCD
thermodynamics. Both these features are incorporated in the Polyakov-loop extended Nambu–Jona-Lasinio (PNJL)
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