Parton Distribution Amplitudes

Thomas Rae

Southampton High Energy Physics, Southampton University

June 14, 2010 Lattice 2010, Villasimius, Sardinia

Collaborators: R. Arthur, P.A. Boyle, D. Brömmel, M. A. Donnellan, J. M. Flynn, A. Jüttner, C. T. C. Sachrajda

・ロン ・四マ ・ヨマー

Distribution Amplitudes:

- are introduced for the QCD description of hard exclusive processes e.g. form factors with a large momentum transfer
- encode the non-perturbative QCD effects that occur from the factorisation of hard exclusive processes
- also appear in factorisation theorems relevant to measuring parameters of the SM:
 - $B \rightarrow \pi l \nu$ (CKM element $|V_{ub}|$)
 - $B \rightarrow D\pi$ (used in tagging)
 - $B \rightarrow \pi \pi, \ K \pi, ...$ (measuring CP violation)
- are calculable on the lattice through their moments

イロン 不同 とくほう イロン

An Exclusive Process

- Consider the form factor, $F_\pi(Q^2)$ for elastic electron-pion scattering, at large $-q^2=Q^2$
- The form factor is the amplitude for the composite pion to remain intact.

- The meson can be thought of as 2 valence quarks
- The quarks carry longitudinal momentum fractions x and $\bar{x} = 1 x$ of the mesons momentum and move roughly parallel to the meson

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

An Exclusive Process

The form factor is a product of 3 probability amplitudes:

- The amplitude $\phi(x,Q^2)$ for finding the two quark valence state in the incoming meson
- The amplitude $T_H(x, y, Q^2)$ for this quark state to scatter with the photon producing two quarks in the final state
- $\bullet\,$ The amplitude $\phi(y,Q^2)$ for this final state to reform into a meson

$$F_{\pi}(Q^2) = \int_0^1 dx \int_0^1 dy \phi_{\pi}(y, Q^2) T_H(x, y, Q^2) \phi_{\pi}(x, Q^2)$$

 $\phi(x,Q^2)$ - The Quark Distribution Amplitude

In light cone gauge, the leading-twist pion distribution amplitude is defined through the matrix element :

$$\begin{aligned} \langle 0|\bar{q}(z)\gamma_{\rho}\gamma_{5}\mathcal{P}(z,-z)q(-z)|\pi(p)\rangle|_{z^{2}=0} \\ &\equiv f_{\pi}(ip_{\rho})\int_{0}^{1}\mathrm{d}x e^{i(x-\bar{x})p.z}\phi_{\pi}(x,\mu) \end{aligned}$$

It is useful to parameterise the distribution amplitudes via their moments.

$$\langle \xi^n \rangle_\pi(\mu^2) = \int_{-1}^1 \mathrm{d}\xi \xi^n \phi_\pi(\xi,\mu^2)$$

where $\xi = x - \bar{x}$ is the difference between longitudinal momentum fractions

 The moments can be related to matrix elements of local operators → Calculation of the DAs on the lattice

$$\langle 0 | \bar{q} \gamma_{\{\rho} \gamma_5 \overleftrightarrow{D}_{\mu\}} q(0) | \pi \rangle = \langle \xi^1 \rangle_\pi f_\pi p_\rho p_\mu$$

$$\langle 0 | \bar{q} \gamma_{\{\rho} \gamma_5 \overleftrightarrow{D}_{\mu} \overleftrightarrow{D}_{\nu\}} q(0) | \pi \rangle = -i \langle \xi^2 \rangle_\pi f_\pi p_\rho p_\mu p_\nu$$

- Mesons with definite G-parity have a symmetry under $x \leftrightarrow \bar{x}$ \therefore odd moments vanish $\langle \xi^1 \rangle_{\pi, -} \langle \xi^1 \rangle_{\rho}$
- $\langle \xi^1 \rangle_{K,} \langle \xi^1 \rangle_{K^*}$ are important for SU(3)-breaking effects
- DAs are often expressed via Gegenbauer moments

$$a_1 = \frac{5}{3} \langle \xi^1 \rangle, \qquad a_2 = \frac{7}{12} (5 \langle \xi^2 \rangle - 1), \dots$$

There have been 3 main approaches to calculating the DA's:

- Extraction from experiment: Shapes of leading-twist DA's can be determined from form factor data, such as $F_{\gamma\gamma^*\pi}$ at CLEO Suffers from contamination of other hadronic uncertainties.
- QCD Sum rules: Has an irreducible error of $\sim 20\%$ as it is not possible to completely isolate the hadronic states. $a_1^K(1GeV) = 0.05(2), \quad 0.10(12), \quad 0.050(25) \text{ and } \quad 0.06(3)$
- Lattice QCD: Quite a few studies including QCDSF and RBC/UKQCD

Simulation Details

- Calculations based on gauge field configurations drawn from joint UKQCD/RBC datasets
- $\bullet\,$ Simulations use $N_f=2+1$ flavours of domain wall fermions with an IWASAKI gauge action
- Results for lattices:
 - $16^3 \times 32 (\times 16)$
 - $24^3 \times 64 (\times 16)$
 - With a common lattice spacing $a^{-1} = 1.73(3)GeV$
 - Quark masses $am_s = 0.04$, $am_l = 0.03$, 0.02, 0.01, 0.005
- Preliminary results:
 - for a finer lattice $32^3 \times 64 (\times 16)$
 - $a^{-1} = 2.285(28)GeV$
 - Quark masses $am_s = 0.03$, $am_l = 0.004$, 0.006, 0.008

イロン 不同 とくほう イロン

Ratios of 2 point correlation functions \longrightarrow Bare moments

- cancels f_{π}
- reduces statistical fluctuations

Pseudoscalar 1st Moment 2 pt functions

$$C_{\{\rho\mu\}P}(t,\mathbf{p}) = \sum_{\mathbf{x}} e^{i\mathbf{p}\cdot\mathbf{x}} \langle 0|O_{\{\rho\mu\}}(t,\mathbf{x})P^{\dagger}(0)|0\rangle$$
$$C_{A_{\nu}P}(t,\mathbf{p}) = \sum_{\mathbf{x}} e^{i\mathbf{p}\cdot\mathbf{x}} \langle 0|A_{\nu}(t,\mathbf{x})P^{\dagger}(0)|0\rangle$$

Pseudoscalar ratio

$$\frac{C_{\{\rho\mu\}}(t,\mathbf{p})}{C_{A_{\nu}P}(t,\mathbf{p})} \stackrel{t \to \infty}{=} \frac{ip_{\rho}p_{\mu}}{p_{\nu}} \langle \xi^{1} \rangle$$

Results: 1st Moment Kaon 32

Results: 1st Moment Chiral extrapolation Kaon

• NLO
$$\chi PT$$
 tells us: $\langle \xi^1 \rangle_K = \frac{8B_0}{f^2} (m_s - m_{u/d}) b_{1,2}$

Results: 1st Moment Chiral extrapolation K^*

→ Ξ →

< 17 >

Results: 2nd Moment Kaon 24

Results: 2nd Moment Chiral extrapolation K

• No strong nonlinear quark mass dependence - Linear Fit.

Results: 2nd Moment Chiral extrapolation π

An initial look at using twisted boundary conditions to induce the momentum for DAs using existing 24^3 data.

- First preliminary results for Kaon 1st moment.
 - Using 2 different twist angles and hence momenta.

- Compared results to existing quantised momenta.
 - However the twisted and untwisted results have different smearings, also twisted has more gauge configurations but doesn't average over equivalent momenta.
 - A direct comparison is therefore difficult

Twisted DAs

э

< 17 ▶

• Chiral limit results in \overline{MS} at 2GeV using NPR, where errors are (stat)(syst)

	$16^3 \times 32$	$24^3 \times 64$	$32^3 imes 64$ (Preliminary)
$\langle \xi^2 \rangle_{\pi}$	0.25(1)(1)	0.28(1)(1)	0.36(4)(1)
$\langle \xi^1 \rangle_K$	0.35(2)(2)	0.36(1)(2)	0.032(2)(2)
$\langle \xi^2 \rangle_K$	0.25(1)(1)	0.26(1)(1)	0.30(2)(1)
$\langle \xi^2 \rangle_{ ho}^{ }$	0.25(1)(1)	0.27(1)(1)	0.32(7)(1)
$\langle \xi^1 \rangle_{K^*}^{ }$	0.37(1)(2)	0.43(2)(3)	0.048(3)(4)

- $\bullet\,$ Additional error of $\sim 2.5\%$ from discretisation effects
- 24/16 cubed results agree with Sum-rules and QCDSF
- Work in progress: Finalisation of 32 cubed results, continuum extrapolation.

・ 同 ト ・ ヨ ト ・ ヨ ト

Additional Slides

Thomas Rae Parton Distribution Amplitudes

$T_{H}\xspace$ - The Hard Scattering Amplitude

- This can be calculated perturbatively.
- Photon couples to a single parton
- Partons only reform if they are collinear
- A Hard gluon exchange is required to turn spectators around
- Valence Fock state dominates

Scaling the 1st moment $24^3/16^3$ results to 32^3 results

- For a comparison it was necessary to scale the results
- $a_{32} \sim 3/4a_{16/24}$
- $\langle \xi^1
 angle_{32}
 ightarrow \langle \xi^1
 angle_{16/24}$ more tricky
- Renormalise at $\mu a = 1$, and run the Gegebauer moments

$$\langle \xi^{1} \rangle_{24}^{b} Z(\mu a = 1) = \langle \xi^{1} \rangle (a_{24}^{-1}) \langle \xi^{1} \rangle_{32}^{b} Z(\mu a = 1) = \langle \xi^{1} \rangle (a_{32}^{-1}) = \langle \xi^{1} \rangle (a_{24}^{-1}) L^{\gamma_{1}^{0}/(2\beta_{0})}$$

• Where
$$L = \alpha_s(\mu^2)/\alpha_s(\mu_0^2)$$
, $\beta_0 = 11 - 2N_f/3$ and $a_1 = 5/3\langle \xi_1 \rangle$
 $\langle \xi^1 \rangle_{32}^b = \langle \xi^1 \rangle_{24}^b L^{\gamma_1^0/(2\beta_0)}.$

イロト 不得 とくほ とくほ とうほう