
Parton Distribution Amplitudes

Thomas Rae

Southampton High Energy Physics, Southampton University

June 14, 2010
Lattice 2010, Villasimius, Sardinia

Collaborators: R. Arthur, P.A. Boyle, D. Brömmel, M. A. Donnellan,
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Introduction

Distribution Amplitudes:

are introduced for the QCD description of hard exclusive
processes - e.g. form factors with a large momentum transfer

encode the non-perturbative QCD effects that occur from the
factorisation of hard exclusive processes

also appear in factorisation theorems relevant to measuring
parameters of the SM:

B → πlν (CKM element |Vub|)
B → Dπ (used in tagging)
B → ππ, Kπ, ... (measuring CP violation)

are calculable on the lattice through their moments
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An Exclusive Process

Consider the form factor, Fπ(Q2) for elastic electron-pion
scattering, at large −q2 = Q2

The form factor is the amplitude for the composite pion to
remain intact.

e e

TH(x, y)

φ(x) φ(y)

γ

The meson can be thought of as 2 valence quarks

The quarks carry longitudinal momentum fractions x and
x̄ = 1− x of the mesons momentum and move roughly
parallel to the meson
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An Exclusive Process

e e

TH(x, y)

φ(x) φ(y)

γ

The form factor is a product of 3 probability amplitudes:

The amplitude φ(x, Q2) for finding the two quark valence
state in the incoming meson

The amplitude TH(x, y, Q2) for this quark state to scatter
with the photon producing two quarks in the final state

The amplitude φ(y, Q2) for this final state to reform into a
meson

Fπ(Q2) =

∫ 1

0
dx

∫ 1

0
dyφπ(y, Q2)TH(x, y, Q2)φπ(x, Q2)
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φ(x, Q2) - The Quark Distribution Amplitude

In light cone gauge, the leading-twist pion distribution amplitude is
defined through the matrix element :

〈0|q̄(z)γργ5P(z,−z)q(−z)|π(p)〉|z2=0

≡ fπ(ipρ)

∫ 1

0
dxei(x−x̄)p.zφπ(x, µ)

It is useful to parameterise the distribution amplitudes via their
moments.

〈ξn〉π(µ2) =

∫ 1

−1
dξξnφπ(ξ, µ2)

where ξ = x− x̄ is the difference between longitudinal momentum
fractions

Thomas Rae Parton Distribution Amplitudes



Moments

The moments can be related to matrix elements of
local operators −→ Calculation of the DAs on the lattice

〈0|q̄γ{ργ5
←→
D µ}q(0)|π〉 = 〈ξ1〉πfπpρpµ

〈0|q̄γ{ργ5
←→
D µ
←→
D ν}q(0)|π〉 = −i〈ξ2〉πfπpρpµpν

Mesons with definite G-parity have a symmetry under x↔ x̄
∴ odd moments vanish 〈ξ1〉π, 〈ξ

1〉ρ

〈ξ1〉K, 〈ξ
1〉K∗ are important for SU(3)-breaking effects

DAs are often expressed via Gegenbauer moments

a1 =
5

3
〈ξ1〉, a2 =

7

12
(5〈ξ2〉 − 1), ...
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Status

There have been 3 main approaches to calculating the DA’s:

Extraction from experiment: Shapes of leading-twist DA’s
can be determined from form factor data, such as Fγγ∗π at
CLEO - Suffers from contamination of other hadronic
uncertainties.

QCD Sum rules: Has an irreducible error of ∼ 20% as it is
not possible to completely isolate the hadronic states.
aK

1 (1GeV ) = 0.05(2), 0.10(12), 0.050(25) and 0.06(3)

Lattice QCD: Quite a few studies - including QCDSF and
RBC/UKQCD
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Simulation Details

Calculations based on gauge field configurations drawn from
joint UKQCD/RBC datasets

Simulations use Nf = 2 + 1 flavours of domain wall fermions
with an IWASAKI gauge action

Results for lattices:

163 × 32(×16)
243 × 64(×16)
With a common lattice spacing a−1 = 1.73(3)GeV
Quark masses ams = 0.04, aml = 0.03, 0.02, 0.01, 0.005

Preliminary results:

for a finer lattice 323 × 64(×16)
a−1 = 2.285(28)GeV
Quark masses ams = 0.03, aml = 0.004, 0.006, 0.008
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Lattice Correlation Functions

Ratios of 2 point correlation functions −→ Bare moments

cancels fπ

reduces statistical fluctuations

Pseudoscalar 1st Moment 2 pt functions

C{ρµ}P (t,p) =
∑

x

eip.x〈0|O{ρµ}(t, x)P
†(0)|0〉

CAνP (t,p) =
∑

x

eip.x〈0|Aν(t, x)P
†(0)|0〉

Pseudoscalar ratio

C{ρµ}(t,p)

CAνP (t,p)

t → ∞

=
ipρpµ

pν
〈ξ1〉
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Results: 1st Moment Kaon 32

RP
{4k};4(t, pk = ±2π/L) = ±i2π

L 〈ξ
1〉, k = 1, 2, 3

〈ξ
1
〉 K

t
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Results: 1st Moment Chiral extrapolation Kaon

NLO χPT tells us: 〈ξ1〉K = 8B0
f2 (ms −mu/d)b1,2
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1
〉 K
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Results: 1st Moment Chiral extrapolation K∗

〈ξ
1
〉 K

∗
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Results: 2nd Moment Kaon 24

RP
{4jk};4(t, pj = ±2π/L, pk = ±2π/L) = −

(

±2π
L

) (

±2π
L

)

〈ξ2〉
〈ξ

2
〉 K
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Results: 2nd Moment Chiral extrapolation K

No strong nonlinear quark mass dependence - Linear Fit.
χPT says no non-analytic dependence at 1 loop
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Results: 2nd Moment Chiral extrapolation π

〈ξ
2
〉 π
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DAs Using Twisted Boundary Conditions

An initial look at using twisted boundary conditions to induce the
momentum for DAs using existing 243 data.

First preliminary results for Kaon 1st moment.

Using 2 different twist angles and hence momenta.

Compared results to existing quantised momenta.

However the twisted and untwisted results have different
smearings, also twisted has more gauge configurations but
doesn’t average over equivalent momenta.
A direct comparison is therefore difficult
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Twisted DAs

〈ξ
1
〉 K

t

Untwisted: p = 2π/L
Twisted: θs = 2.7922 (+0.03)
Twisted: θl = 1.600 (+0.09)
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Summary

Chiral limit results in MS at 2GeV using NPR, where errors
are (stat)(syst)

163 × 32 243 × 64 323 × 64(Preliminary)

〈ξ2〉π 0.25(1)(1) 0.28(1)(1) 0.36(4)(1)
〈ξ1〉K 0.35(2)(2) 0.36(1)(2) 0.032(2)(2)
〈ξ2〉K 0.25(1)(1) 0.26(1)(1) 0.30(2)(1)

〈ξ2〉
||
ρ 0.25(1)(1) 0.27(1)(1) 0.32(7)(1)

〈ξ1〉
||
K∗ 0.37(1)(2) 0.43(2)(3) 0.048(3)(4)

Additional error of ∼ 2.5% from discretisation effects

24/16 cubed results agree with Sum-rules and QCDSF

Work in progress: Finalisation of 32 cubed results, continuum
extrapolation.
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Additional Slides
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TH - The Hard Scattering Amplitude

This can be calculated perturbatively.

Photon couples to a single parton

Partons only reform if they are collinear

A Hard gluon exchange is required to turn spectators around

Valence Fock state dominates

x1

−→
P1

−→q = −2
−→
P1

x2

−→
P2

=

x1

−→
P1

−→q

x2

−→
P2

y1

−→
P2

y2

−→
P2
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Scaling the 1st moment 243/163 results to 323 results

For a comparison it was necessary to scale the results

a32 ∼ 3/4a16/24

〈ξ1〉32 → 〈ξ
1〉16/24 more tricky

Renormalise at µa = 1, and run the Gegebauer moments

〈ξ1〉b24Z(µa = 1) = 〈ξ1〉(a−1
24 )

〈ξ1〉b32Z(µa = 1) = 〈ξ1〉(a−1
32 )

= 〈ξ1〉(a−1
24 )Lγ0

1/(2β0)

Where L = αs(µ
2)/αs(µ

2
0), β0 = 11− 2Nf/3 and

a1 = 5/3〈ξ1〉

〈ξ1〉b32 = 〈ξ1〉b24L
γ0
1/(2β0).
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