Richard Galvez¹

Simon Catterall¹ Mithat Ünsal²

¹Syracuse University Physics Department

²SLAC and Stanford University Physics Department

28th International Symposium on Lattice Field Theory

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Outline

1 Physics Motivation

- 2 Eguchi-Kawai reduction
- 3 Numerical Results

4 Conclusions

Physics Motivation

Technicolor Review

 Much recent interest in theories of strong dynamics, which may serve to break EW symmetry.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Physics Motivation

Technicolor Review

- Much recent interest in theories of strong dynamics, which may serve to break EW symmetry.
- Higgs appears as a composite particle of "techniquarks" new fermions with new gauge interaction.

Technicolor Review

- Much recent interest in theories of strong dynamics, which may serve to break EW symmetry.
- Higgs appears as a composite particle of "techniquarks" new fermions with new gauge interaction.
- W,Z pick up masses by eating pseudo Goldstone bosons associated with spontaneous breaking of the new global chiral symmetries.

Physics Motivation

Technicolor Review

 Technicolor dynamics require non-perturbative techniques to make predictions about chiral condensate, technihadron spectrum, etc.

Technicolor Review

- Technicolor dynamics require non-perturbative techniques to make predictions about chiral condensate, technihadron spectrum, etc.
- Dynamics cannot be exactly as scaled down QCD, due to possible conflicts with EW precision experiments.

Technicolor Review

- Technicolor dynamics require non-perturbative techniques to make predictions about chiral condensate, technihadron spectrum, etc.
- Dynamics cannot be exactly as scaled down QCD, due to possible conflicts with EW precision experiments.
- One possible scenario is for the theory to be near conformal or walking.

Technicolor Review

- Technicolor dynamics require non-perturbative techniques to make predictions about chiral condensate, technihadron spectrum, etc.
- Dynamics cannot be exactly as scaled down QCD, due to possible conflicts with EW precision experiments.
- One possible scenario is for the theory to be near conformal or walking.
- Minimal key ingredients towards walking dynamics are using an SU(2) gauge group with $N_f = 2$ (or 3?) (Dietrich, Sannino, et al).

Physics Motivation

Simulating walking technicolor not an easy task..

• Near conformal implies that finite volume effects very large.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Physics Motivation

Simulating walking technicolor not an easy task..

• Near conformal implies that finite volume effects very large.

Naively seems we need large lattices.

Simulating walking technicolor not an easy task..

Near conformal implies that finite volume effects very large.

- Naively seems we need large lattices.
- Simulated by multiple groups by multiple means (Catterall-Giedt-Sannino-Schneible, Debbio-Luicini-Patella-Pica-Rago, Hietanen-Rummukainen-Tuominen, et al).

Eguchi-Kawai reduction

Volume independence, old idea, revisited

Perhaps there is another way, using Eguchi-Kawai reduction.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Eguchi-Kawai reduction

Volume independence, old idea, revisited

- Perhaps there is another way, using Eguchi-Kawai reduction.
- 1982, Eguchi and Kawai provided a proof of volume reduction for large N Yang Mills.

Eguchi-Kawai reduction

Volume independence, old idea, revisited

- Perhaps there is another way, using Eguchi-Kawai reduction.
- 1982, Eguchi and Kawai provided a proof of volume reduction for large N Yang Mills.

Main idea is exp values are independent of volume.

Eguchi-Kawai reduction

Volume independence, old idea, revisited

- Perhaps there is another way, using Eguchi-Kawai reduction.
- 1982, Eguchi and Kawai provided a proof of volume reduction for large N Yang Mills.

- Main idea is exp values are independent of volume.
- Also, N_f* is independent of N_c at leading order in N. At infinite-N, this leading behavior is independent of volume.

Eguchi-Kawai reduction

Volume independence, old idea, revisited

- Perhaps there is another way, using Eguchi-Kawai reduction.
- 1982, Eguchi and Kawai provided a proof of volume reduction for large N Yang Mills.

- Main idea is exp values are independent of volume.
- Also, N_f* is independent of N_c at leading order in N. At infinite-N, this leading behavior is independent of volume.
- Thus EK reduction may yield an alternative route to investigating near conformal behavior of ETC.

Eguchi-Kawai reduction

Eguchi-Kawai reduction, basic proof

Translational symmetry must hold.

Eguchi-Kawai reduction

Eguchi-Kawai reduction, basic proof

- Translational symmetry must hold.
- Center symmetry for each compactified spatial direction must also hold.

Eguchi-Kawai reduction, basic proof

- Translational symmetry must hold.
- Center symmetry for each compactified spatial direction must also hold.
- In general, they showed that: $\langle \mathcal{O}_f \rangle = \Gamma(\text{some parameters})$,

Eguchi-Kawai reduction, basic proof

- Translational symmetry must hold.
- Center symmetry for each compactified spatial direction must also hold.
- In general, they showed that: $\langle \mathcal{O}_f \rangle = \Gamma(\text{some parameters})$,
- while $\langle O_r \rangle = \Gamma +$ some extra terms proportional to Wilson lines, like $\langle TrU_{\mu}TrU_{\nu} \dots \rangle$.

Eguchi-Kawai reduction, basic proof

- Translational symmetry must hold.
- Center symmetry for each compactified spatial direction must also hold.
- In general, they showed that: $\langle \mathcal{O}_f \rangle = \Gamma(\text{some parameters})$,
- while $\langle O_r \rangle = \Gamma +$ some extra terms proportional to Wilson lines, like $\langle TrU_{\mu}TrU_{\nu} \dots \rangle$.

Now we can use factorization: $< TrU_{\mu}TrU_{\nu} >= < TrU_{\mu} > < TrU_{\nu} > +\frac{1}{N}$ (other stuff..)

Eguchi-Kawai reduction, basic proof

- Translational symmetry must hold.
- Center symmetry for each compactified spatial direction must also hold.
- In general, they showed that: $\langle \mathcal{O}_f \rangle = \Gamma$ (some parameters),
- while $\langle O_r \rangle = \Gamma +$ some extra terms proportional to Wilson lines, like $\langle TrU_{\mu}TrU_{\nu} \dots \rangle$.

- Now we can use factorization: $< TrU_{\mu}TrU_{\nu} >= < TrU_{\mu} > < TrU_{\nu} > +\frac{1}{N}$ (other stuff..)
- Center sym: $U_{\mu} \rightarrow zU_{\mu}$ for $z \in SU(N)$.

Eguchi-Kawai reduction, basic proof

- Translational symmetry must hold.
- Center symmetry for each compactified spatial direction must also hold.
- In general, they showed that: $\langle \mathcal{O}_f \rangle = \Gamma(\text{some parameters})$,
- while $\langle O_r \rangle = \Gamma +$ some extra terms proportional to Wilson lines, like $\langle TrU_{\mu}TrU_{\nu} \dots \rangle$.
- Now we can use factorization: $< TrU_{\mu}TrU_{\nu} > = < TrU_{\mu} > < TrU_{\nu} > +\frac{1}{N}$ (other stuff..)
- Center sym: $U_{\mu} \rightarrow zU_{\mu}$ for $z \in SU(N)$.
- $< TrU_{\mu} > must \rightarrow 0$, as it is a non-symmetric product in the center-symmetric theory, and ensures reduction.

Eguchi-Kawai reduction, basic proof

- Translational symmetry must hold.
- Center symmetry for each compactified spatial direction must also hold.
- In general, they showed that: $\langle \mathcal{O}_f \rangle = \Gamma(\text{some parameters})$,
- while $\langle O_r \rangle = \Gamma +$ some extra terms proportional to Wilson lines, like $\langle TrU_{\mu}TrU_{\nu} \dots \rangle$.
- Now we can use factorization: $< TrU_{\mu}TrU_{\nu} > = < TrU_{\mu} > < TrU_{\nu} > +\frac{1}{N}$ (other stuff..)
- Center sym: $U_{\mu} \rightarrow zU_{\mu}$ for $z \in SU(N)$.
- $< TrU_{\mu} > must \rightarrow 0$, as it is a non-symmetric product in the center-symmetric theory, and ensures reduction.
- Polyakov (or Wilson) lines become relevant order parameters.

Eguchi-Kawai reduction

Center symmetry plays key role

• For SU(N), center symmetry is Z_N , i.e. $U_\mu \rightarrow e^{\frac{i2\pi k}{N}} U_\mu$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Eguchi-Kawai reduction

Center symmetry plays key role

- For SU(N), center symmetry is Z_N , i.e. $U_\mu \rightarrow e^{\frac{i2\pi k}{N}} U_\mu$.
- Center symmetry was shown to break spontaneously for dimensions greater than 2 for pure large N gauge theory (Bhanot, Heller, Neuberger 82').

Eguchi-Kawai reduction

Center symmetry plays key role

- For SU(N), center symmetry is Z_N , i.e. $U_\mu \rightarrow e^{\frac{i2\pi k}{N}} U_\mu$.
- Center symmetry was shown to break spontaneously for dimensions greater than 2 for pure large N gauge theory (Bhanot, Heller, Neuberger 82').

But what about adjoint fermions?

Center symmetry plays key role

- For SU(N), center symmetry is Z_N , i.e. $U_\mu \rightarrow e^{\frac{i2\pi k}{N}} U_\mu$.
- Center symmetry was shown to break spontaneously for dimensions greater than 2 for pure large N gauge theory (Bhanot, Heller, Neuberger 82').
- But what about adjoint fermions?
- One-loop analysis shows that center sym is restored with the addition of adjoint quarks endowed with p.b.c. and arbitrary N_f (Kovtun, Ünsal, Yaffe)

Center symmetry plays key role

- For SU(N), center symmetry is Z_N , i.e. $U_\mu \rightarrow e^{\frac{i2\pi k}{N}} U_\mu$.
- Center symmetry was shown to break spontaneously for dimensions greater than 2 for pure large N gauge theory (Bhanot, Heller, Neuberger 82').
- But what about adjoint fermions?
- One-loop analysis shows that center sym is restored with the addition of adjoint quarks endowed with p.b.c. and arbitrary N_f (Kovtun, Ünsal, Yaffe)

 Needs to be checked non-perturbatively and in particular, finite coupling.

Center symmetry plays key role

- For SU(N), center symmetry is Z_N , i.e. $U_\mu \rightarrow e^{\frac{i2\pi k}{N}} U_\mu$.
- Center symmetry was shown to break spontaneously for dimensions greater than 2 for pure large N gauge theory (Bhanot, Heller, Neuberger 82').
- But what about adjoint fermions?
- One-loop analysis shows that center sym is restored with the addition of adjoint quarks endowed with p.b.c. and arbitrary N_f (Kovtun, Ünsal, Yaffe)
- Needs to be checked non-perturbatively and in particular, finite coupling.
- One flavor was checked numerically by (Bringoltz-Sharpe) and 1/2 flavor (Hietanen-Narayanan) using RMT. We address two flavors in this talk.

Center symmetry plays key role

- For SU(N), center symmetry is Z_N , i.e. $U_\mu \rightarrow e^{\frac{i2\pi k}{N}} U_\mu$.
- Center symmetry was shown to break spontaneously for dimensions greater than 2 for pure large N gauge theory (Bhanot, Heller, Neuberger 82').
- But what about adjoint fermions?
- One-loop analysis shows that center sym is restored with the addition of adjoint quarks endowed with p.b.c. and arbitrary N_f (Kovtun, Ünsal, Yaffe)
- Needs to be checked non-perturbatively and in particular, finite coupling.
- One flavor was checked numerically by (Bringoltz-Sharpe) and 1/2 flavor (Hietanen-Narayanan) using RMT. We address two flavors in this talk.
- Heavy adjoint flavors with p.b.c. in circumstances which mimics R³ × S¹ has been simulated (Cossu and D'elia).

-Numerical Results

Computational setup

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

-Numerical Results

Computational setup

- **1** Simulated on 2⁴ lattice.
- 2 N ranging from 2 7

-Numerical Results

Computational setup

- 1 Simulated on 2⁴ lattice.
- 2 N ranging from 2 7
- **3** $1/\beta = \lambda = g^2 N$ ('t Hooft coupling) with values 0.5, 1, 2, 5.

-Numerical Results

Computational setup

- 1 Simulated on 2⁴ lattice.
- 2 N ranging from 2 7

3 $1/\beta = \lambda = g^2 N$ ('t Hooft coupling) with values 0.5, 1, 2, 5.

 Used Wilson dynamical adjoint fermions with bare quark masses between -2 - 8.

Computational setup

- 1 Simulated on 2⁴ lattice.
- 2 N ranging from 2 7
- **3** $1/\beta = \lambda = g^2 N$ ('t Hooft coupling) with values 0.5, 1, 2, 5.

- Used Wilson dynamical adjoint fermions with bare quark masses between -2 - 8.
- **5** Critical line found to be near mass = -1.

Computational setup

- 1 Simulated on 2⁴ lattice.
- 2 N ranging from 2 7

3 $1/\beta = \lambda = g^2 N$ ('t Hooft coupling) with values 0.5, 1, 2, 5.

- Used Wilson dynamical adjoint fermions with bare quark masses between -2 - 8.
- **5** Critical line found to be near mass = -1.
- 6 Standard HMC algorithm used, order of 1000 measurements.

Quenched Approximation

Pure gauge breaks center ($m = \infty$), as expected.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

-Numerical Results

Quenched Approximation

Pure gauge breaks center ($m = \infty$), as expected.

|∃▶ ▲ 差▶ = = ∽ < ⊙

-Numerical Results

Quenched Approximation

Pure gauge breaks center ($m = \infty$), as expected.

-Numerical Results

Adjoint Fermions

Inclusion of adjoint fermions restores center

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Adjoint Fermions

Inclusion of adjoint fermions restores center

э

Absolute Value of Polyakov Line

-Numerical Results

Adjoint Fermions

Inclusion of adjoint fermions restores center

●▶ ▲ 善▶ ▲ 善 ● ●

-Numerical Results

Adjoint Fermions

Inclusion of adjoint fermions restores center

< ∃ >

æ

Adjoint Fermions

More exotic order parameters might break center..

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Adjoint Fermions

More exotic order parameters might break center..

Absolute value of mixed Polyakov line

Adjoint fermions

More exotic order parameters might break center..

Absolute value of mixed Polyakov line

(ロ)、(型)、(E)、(E)、 E) のQの

-Numerical Results

Alternative explanation

Alternative explanation

Kaluza Klein towers emerge from pbc and compactification..

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

,

Conclusions

Center symmetry restoration

• Absolute value of $< P_{\mu} >$ consistent with zero as λ goes to 0.

Center symmetry restoration

• Absolute value of $< P_{\mu} >$ consistent with zero as λ goes to 0.

• More exotic order parameters like $\langle P_1 P_2^{\dagger} \rangle \rightarrow 0$.

Center symmetry restoration

- Absolute value of $< P_{\mu} >$ consistent with zero as λ goes to 0.
- More exotic order parameters like $\langle P_1 P_2^{\dagger} \rangle \rightarrow 0$.
- Our results indicate that center symmetry is also restored in the two flavor case.

Ongoing work

 We now have non-perturbative reason to believe EK reduction works with adjoint fermions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ongoing work

We now have non-perturbative reason to believe EK reduction works with adjoint fermions.

- ロ ト - 4 回 ト - 4 □ - 4

 Closing remark, collaborators said it best, Ünsal and Yaffe (arxiv:1006.2101/hep-th, great paper, suggested "light" reading):

Ongoing work

- We now have non-perturbative reason to believe EK reduction works with adjoint fermions.
- Closing remark, collaborators said it best, Ünsal and Yaffe (arxiv:1006.2101/hep-th, great paper, suggested "light" reading):
- "The 1/N suppression of finite volume effects in large N center symmetric theories allows one to trade a large volume extrapolation for a large N extrapolation, and should be helpful for studies of conformal windows in the large N theories."

Ongoing work

- We now have non-perturbative reason to believe EK reduction works with adjoint fermions.
- Closing remark, collaborators said it best, Ünsal and Yaffe (arxiv:1006.2101/hep-th, great paper, suggested "light" reading):
- "The 1/N suppression of finite volume effects in large N center symmetric theories allows one to trade a large volume extrapolation for a large N extrapolation, and should be helpful for studies of conformal windows in the large N theories."
- We may now determine N_f critical by simulating the SU(N) theory at small volumes with large N.

Ongoing work

- We now have non-perturbative reason to believe EK reduction works with adjoint fermions.
- Closing remark, collaborators said it best, Ünsal and Yaffe (arxiv:1006.2101/hep-th, great paper, suggested "light" reading):
- "The 1/N suppression of finite volume effects in large N center symmetric theories allows one to trade a large volume extrapolation for a large N extrapolation, and should be helpful for studies of conformal windows in the large N theories."
- We may now determine N_f critical by simulating the SU(N) theory at small volumes with large N.
- For more information: arXiv:1006.2469v1, "Realization of Center Symmetry in Two Adjoint Flavor Large-N Yang-Mills."

- Conclusions

Thank you very much! Also, I thank A. Hietanen, R. Narayanan and M. Ünsal for useful discussions. I am also thankful for funding from Simon Catterall's DOE grant and the Syracuse STEM Graduate Fellowship.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <