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Overview

• Effect of dynamical quarks on the microscopic spectrum of the Wilson
Dirac operator at finite lattice spacing a

• There are important differences between the quenched and unquenched
theories

• The Nf = 1 theory is special already in the continuum

• In contrast to the Nf = 2 case (hard!), the Nf = 1 calculation has been
carried through analytically

• Detailed results for spectrum of the Hermitian Wilson Dirac operator and
the spectrum of real modes

1



The ǫ-regime: Continuum

Spontaneous breaking of chiral symmetry Σ = limm→0 limV →∞〈ψ̄ψ〉

Finite-volume scaling in the ǫ-regime:

V → ∞ , mπL≪ 1

Low-energy QCD depends only on the scaling variable

m̂ ≡ mΣV

Rescale Dirac operator eigenvalues λ , ξ ≡ λΣV

Universal distributions and spectral correlation functions.
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Effective theory for Nf = 1 (continuum)
No spontaneous chiral symmetry breaking

Chiral condensate Σ = limm→0 limV →∞〈ψ̄ψ〉 because of the anomaly

Leading-order effective theory [Leutwyler-Smilga]:

Z = exp [mΣV ]

Fix topology

Zν =

∫

U(1)

dU(detU)ν exp

[

1

2
mΣV [U + U †]

]

Looks like the leading-order chiral Lagrangian for a U(1) theory!
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Effective theory for Nf = 1 (Wilson)

Include explicit chiral symmetry breaking of Wilson fermions

Expand as power series in a2 [Sharpe, Singleton, Rupak, Shoresh, Bär]

Leading-order effective theory:

Z = exp
[

mΣV −W8V a
2
]

The coefficient W8 is a low-energy Wilson constant

Corresponding operators ∼ a2(ψ̄ψ)2
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Counting rule

Different countings for the effective theory [Shindler, Bär, Necco, Schaefer]

We choose to keep

m̂ ≡ mΣV and â2 ≡ a2W8V

fixed as V → ∞

This is the regime where there is maximal competition between m and a2

effects

5



Chiral rotation

In the continuum a chiral rotation α shifts the vacuum angle θ → θ + α

For Wilson fermions define

Z = exp
[

m cos(θ)ΣV −W8V a
2 cos(2θ)

]

and do the Fourier transform

Then

Z =
∞
∑

ν=−∞

Zν

Observation: The partition function is a sum over sectors with |ν| real
modes of the Wilson Dirac operator
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Partial Quenching

To get spectral information we need either

* Pairs of extra species with opposite statistics or

* Replicas

Here we use the graded method (add a boson and a fermion)

Z2|1(M̂, Ẑ) =

∫

Gl(2|1)

dUSdet(U)νei1
2Str(M̂[U−U−1])+i1

2Str(Ẑ[U+U−1])+â2Str(U2+U−2)

where

M̂ =





m̂f 0 0
0 m̂ 0
0 0 m̂′



 Ẑ =





ẑf 0 0
0 ẑ 0
0 0 ẑ′
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Explicit representation:

U =





eit+iu cos(θ) ieit+iφ sin(θ) 0
ieit−iφ sin(θ) eit−iu cos(θ) 0

0 0 es



 exp





0 0 α1

0 0 α2

β1 β2 0





where θ, t, u ∈ [−π, π] and φ ∈ [0, π].

The boson is integrated over the real line

The α’s and β’s are Grassmann variables

Other terms in the action like ∼ (Str[U + U †])2 can be added without
fundamental difficulty
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We have done the Grassmann and one angular integrations explicity

Three compact and one non-compact integrations left

These integrations are done numerically
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Eigenvalues of the Wilson Dirac operator

Wilson Dirac operator D is only γ5-Hermitian: D† = γ5Dγ5

Easier to look at the Hermitian Wilson Dirac operator D5 = γ5(D +m)

The resolvent

Gν(ẑ, m̂) ≡ lim
ẑ′→ẑ

∂

∂ẑ
lnZν

2|1(m̂, m̂, m̂, ẑ, ẑ
′) =

〈

Tr

(

1

D5 + ẑ

)〉

Spectral density of D5:

ρν
5(x̂) =

1

π
Im[Gν(x̂, m̂)]
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Spectrum of the Hermitian Wilson Dirac operator

Spectral density of D5 for ν = 0
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In contrast to Nf = 0, ρν
5 always vanishes at x = 0
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A mild sign problem when m is small
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Microscopic spectrum of the real modes I

-0.2 -0.1 0 0.1 0.2

Re(z)
-2

-1

0

1

2

Im
(z

)

13



Microscopic spectrum of the real modes II

Define the usual resolvent (and put ẑ = ẑ′ = 0)

Σν(m̂f , m̂) ≡ lim
m̂′→m̂

∂

∂m̂
lnZν

2|1(m̂f , m̂, m̂
′)

Density of real eigenvalues of the Wilson Dirac operator:

ρν
topo(ζ̂) =

1

π
Im[Σν(m̂f , ζ̂)]
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ρtopo(ζ̂) changes sign at m̂
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The density is automatically normalized to
∫

dζ̂ρν
topo(ζ̂) = ν
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The Nf = 1 theory is quite special

In each sector of ν real modes 〈ψ̄ψ〉ν is a non-trivial function

When we sum over all sectors the effective theory trivializes leading to
〈ψ̄ψ〉 = Σ

This is constant and independent of a2 (Recall: Z = emΣV −a2W8V )

We have checked this by explicit summation over ν
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Wilson chiral Random Matrix Theory

The matrix

D =

(

aA iW

iW † aB

)

can be used to define Wilson chiral Random Matrix Theory

Zν =

∫

dAdBdW det[D +mf ]e−N(WW †+1
2A2+1

2B2)

with A,B Hermitian and W complex

In the large-N limit we recover the same effective theory and same eigenvalue
densities [PHD, Splittorff, Verbaarschot]
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A typical scatter plot of Wilson chiral RMT eigenvalues
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Here ν = 5

The 5 real modes are clearly visible
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The sign of W8

We have assumed that W8 is positive

We are only able to make sense of the spectrum if W8 > 0

(Same story as in the quenched case – c.f. Jac Verbaarschot’s talk)
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Conclusions

• Wilson chiral RMT equivalent to leading-order Wilson ChPT

• The Nf = 1 theory has been described in sectors of ν real modes

• We have computed the eigenvalue densities of D5 real modes of D

• Still a jump in complexity up to Nf = 2 (but it’s doable)

• Once established, a new way to extract Wi’s
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