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Overview

Effect of dynamical quarks on the microscopic spectrum of the Wilson
Dirac operator at finite lattice spacing a

There are important differences between the quenched and unquenched
theories

The Ny =1 theory is special already in the continuum

In contrast to the Ny = 2 case (hard!), the Ny = 1 calculation has been
carried through analytically

Detailed results for spectrum of the Hermitian Wilson Dirac operator and
the spectrum of real modes



The c-regime: Continuum

Spontaneous breaking of chiral symmetry ¥ = lim,, o limy _ o (1))

Finite-volume scaling in the e-regime:

V —-00 | m.L <1

Low-energy QCD depends only on the scaling variable

m m2V

Rescale Dirac operator eigenvalues A , & = A\XV

Universal distributions and spectral correlation functions.



Effective theory for Ny =1 (continuum)

No spontaneous chiral symmetry breaking
Chiral condensate ¥ = lim,,, o limy _(1)1)) because of the anomaly

Leading-order effective theory [Leutwyler-Smilgal:

Z = exp|mXV]
Fix topology

1
Z, = / dU (det U)" exp [—mZV[U + UT]]
U(1) 2

Looks like the leading-order chiral Lagrangian for a U(1) theory!



Effective theory for Ny =1 (Wilson)

Include explicit chiral symmetry breaking of Wilson fermions
Expand as power series in a? [Sharpe, Singleton, Rupak, Shoresh, Bar]

Leading-order effective theory:

Z = exp [mEV — WSVCLQ]

The coefficient Wy is a low-energy Wilson constant

Corresponding operators ~ a?(11))?



Counting rule

Different countings for the effective theory [Shindler, Bar, Necco, Schaefer]

We choose to keep
m = mxV and &% = a*WRV

fixed as V — o

This is the regime where there is maximal competition between m and a?
effects



Chiral rotation

In the continuum a chiral rotation « shifts the vacuum angle 6 — 6 + «

For Wilson fermions define
Z = exp|mcos(0)XV — WsVa®cos(26)]
and do the Fourier transform

Then

Z = iZ,,

V=—00

Observation: The partition function is a sum over sectors with |v| real
modes of the Wilson Dirac operator



Partial Quenching

To get spectral information we need either

*  Pairs of extra species with opposite statistics or

*  Replicas

Here we use the graded method (add a boson and a fermion)

Zop (M, 2) = / dUSdet(U)V et 2Str(MIU-UT N +igStr(Z[U+U T +aStr(U*+U )

Gl(2|1)
where
A mg 0 0 ) zr 00
M = 0O m O Z = 0O 2 0
0 0 m 0o 0 2



Explicit representation:

et T cos(0) ieT?sin(6) 0 0 0 o
U = e sin(f) e~ cos(d) 0 |exp| O 0 a»
0 0 e’ pi P2 O

where 0,t,u € [—m, ] and ¢ € [0, 7].
The boson is integrated over the real line
The a's and 3's are Grassmann variables

Other terms in the action like ~ (Str[U + U'])? can be added without
fundamental difficulty



We have done the Grassmann and one angular integrations explicity
Three compact and one non-compact integrations left

These integrations are done numerically



Eigenvalues of the Wilson Dirac operator

Wilson Dirac operator D is only vs-Hermitian: DT = ~5D~s
Easier to look at the Hermitian Wilson Dirac operator D5 = v5(D + m)

The resolvent

9 |
G'(&m) = lim =2InZy, (m, i, 1, 2, 2) = <Tr (D5+2)>

Spectral density of Dxs:

10



Spectral density of D5 for v =0

In

Spectrum of the Hermitian Wilson Dirac operator
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contrast to Ny = 0, pg always vanishes at z = 0
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A mild sign problem when m is small

— NFL a=05
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Microscopic spectrum of the real modes |

0.1 0.2
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Microscopic spectrum of the real modes Il

Define the usual resolvent (and put 2 = 2/ = 0)

0
=) =, o

In Zy 11y, 10, 177)

Density of real eigenvalues of the Wilson Dirac operator:

N 1 N
ptyopo(C) Im[zy(mfa C)]

7

14



A

Propo(C) changes sign at m

-10 10

The density is automatically normalized to fdép’tjopo(é) = v
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The N; =1 theory is quite special

In each sector of v real modes (Y1), is a non-trivial function

When we sum over all sectors the effective theory trivializes leading to
(W) =X

.. . 2
This is constant and independent of a? (Recall: Z = em>V —a"WslV)

We have checked this by explicit summation over v
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Wilson chiral Random Matrix Theory

aA W
D= (’L'VVJr aB)

can be used to define Wilson chiral Random Matrix Theory

The matrix

2, = [ dAdBaW det[D + myle NS

with A, B Hermitian and W complex

In the large- N limit we recover the same effective theory and same eigenvalue
densities [PHD, Splittorff, Verbaarschot]
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A typical scatter plot of Wilson chiral RMT eigenvalues

Here v = 5

The 5 real modes are clearly visible
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The sign of Wy

We have assumed that Wy is positive
We are only able to make sense of the spectrum if Wg > 0

(Same story as in the quenched case — c.f. Jac Verbaarschot'’s talk)
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Conclusions

Wilson chiral RMT equivalent to leading-order Wilson ChPT

The Ny =1 theory has been described in sectors of v real modes
We have computed the eigenvalue densities of D5 real modes of D
Still a jump in complexity up to Ny = 2 (but it's doable)

Once established, a new way to extract W;'s
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