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Introduction

Why it is interesting to study G2 gauge theories?

In SU(3) gauge theory confinement is related to the center of the gauge
group

The center of G2 is trivial

G2 Yang Mills helps to clarify the relevance of center symmetry for
confinement

Possibility to distinguish between different confinement scenarios

Similarity to QCD where center symmetry is explicitly broken by matter fields

Test of Casimir scaling hypothesis and string breaking in different
representations of the gauge group
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The gauge group G2
Properties of the exceptional Lie-group G2

G2 is the smallest Lie-group which is simply connected and has a trivial
center

The group has rank 2 and hence possesses two fundamental representations

{7} = [1, 0], {14} = [0, 1].

It is a subgroup of SO(7), one can view the elements of the representation
{7} as matrices in the defining representation of SO(7), subject to seven
independent cubic constraints

Tabc = Tdef gda geb gfc

where T is a total antisymmetric tensor given by

T127 = T154 = T163 = T235 = T264 = T374 = T576 = 1.

The gauge group SU(3) of QCD is a subgroup of G2 and the corresponding
coset space is a sphere

G2/SU(3) ∼ SO(7)/SO(6) ∼ S6.
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The gauge group G2
Representation theory and implications for confinement

Confinement in SU(3) gluodynamics

The center of SU(3) is Z3

Quarks and anti-quarks transform under the {3} and {3̄} representation
which have 3-ality (1) and (−1)

Charges of quarks and anti-quarks can only be screened by particles with
non-vanishing 3-ality

The Polyakov loop expectation value serves as an order parameter for the Z3

center symmetry and for confinement / deconfinement

static inter-quark potential is linearly rising up to arbitrary long distances

Björn H. Wellegehausen Confinement in G2 Gauge Theories 5 / 17



The gauge group G2
Representation theory and implications for confinement

Confinement in G2 gluodynamics

Quarks transform under the {7}, gluons under the {14} representation

Similarly as in SU(3) two or three quarks can build a colour singlet

{7} ⊗ {7} = {1} ⊕ · · · , {7} ⊗ {7} ⊗ {7} = {1} ⊕ · · ·

In contrast gluons can screen the colour charge of a single static quark

{7} ⊗ {14} ⊗ {14} ⊗ {14} = {1} ⊕ · · · .

The flux tube between two static quarks can break due to gluon production

No linear rising potential up to arbitrary long distances

Confinement in G2 gluodynamic really means as in QCD

absence of free colour charges in the physical spectrum
linear rising potential only at intermediate scales

K. Holland, P. Minkowski, M. Pepe and U. J. Wiese, Nucl. Phys. B668 (2003) 207
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The gauge group G2
The confinement-deconfinement phase transition
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The Polyakov loop is an approximate order parameter which changes rapidly
at the phase transition and is small (but non-zero) in the confining phase

First order confinement deconfinement phase transition 1

1
K. Holland, P. Minkowski, M. Pepe and U. J. Wiese, Nucl. Phys. B668 (2003) 207
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Algorithmic considerations
LHMC algorithm

Wilson Action

Local HMC algorithm for updating link variables

Computation of the exponential map of G2 via Coset space decomposition

U = S · V(W) with S ∈ G2/SU(3)

In terms of Lie algreba elements

exp {δτ u} = exp {δτ s}·exp {δτ v} with generators u ∈ g2, v ∈ V∗(su(3))

Baker-Campbell-Hausdorff relates u,s and v

δτ u = δτ (s + v) +
1

2
δτ 2 [ s, v ] + . . .
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Algorithmic considerations
Exponential error reduction for Wilson-lines

In a confined phase Wilson loops obey an
area law
If we want to compute Wilson loops
without any smearing, we need exponential
error reduction M. Lüscher, P. Weisz, JHEP 0109:010,2001

〈W (R,T )〉 = 〈tr[U1]V1 [U2]V2 [U3]V3〉
Sublattice expectation value [U ]Vi is
computed with fixed boundary conditions

Further refinement with multiple levels
according to

[U ]Vi = [[U1]Vi1 [U2]Vi2 ]V

Splitting in temporal and spatial direction
to avoid tensor products

V̄

V1

V2

V3

V4

V̄
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String tension and Casimir scaling
The quark anti-quark potential

The quark anti-quark potential in representation R can be parametrised as

VR(R) = γR −
αR
R

+ σRR

with string tension σR and Coulomb constant αR
Lattice derivative defines the local string tension σR(R)

σR(R + ρ/2) =
VR(R + ρ)− VR(R)

ρ
=

αR
R(R + ρ)

+ σR

Casimir scaling

At intermediate scales we expect Casimir scaling σR/σ
′
R = cR/c

′
R with quadratic

Casimir cR of representation R

R [1, 0] [0, 1] [2, 0] [1, 1] [0, 2] [3, 0] [4, 0] [2, 1]
dR 7 14 27 64 77 77 182 189
cR 12 24 28 42 60 48 72 64
CR 1 2 7/3 3.5 5 4 6 16/3
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String tension and Casimir scaling
The quark anti-quark potential

Potential from Wilson loops

VR(R) =
1

τ
ln
〈WR(R,T )〉
〈WR(R,T + τ)〉

σR(R + ρ/2) = − 1

τρ
ln
〈WR(R + ρ,T + τ)〉 〈WR(R,T )〉
〈WR(R + ρ,T )〉 〈WR(R,T + τ)〉

Potential from Polyakov loops

VR(R) = − 1

βT
ln 〈PR(0)PR(R)〉

σR(R + ρ/2) = − 1

βTρ
ln
〈PR(0)PR(R + ρ)〉
〈PR(0)PR(R)〉
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Results in 3 dimensions
Continuum scaling behaviour
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Physical units

There is no physical length scale in
G2 gluodynamics

σ = σ̂a2, R = R̂a, V = V̂ a−1

Vσ−
1
2 = V̂ σ̂−

1
2

Rσ
1
2 = R̂σ̂

1
2

We can fix a length scale except
for a constant σ[1,0] = µ

Simulations on lattices L× L× βT = 283 and L× L× βT = 483 and
different values of β (lattice spacing a)

No difference between potentials from Wilson loops or Polyakov loops

In physical units no difference between different lattice spacings and volumes
→ close to the continuum limit
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Results in 3 dimensions
Casimir scaling
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Results in 3 dimensions
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Results in 3 dimensions
Casimir scaling
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Casimir scaling in 3 dimensions works!
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Results in 3 dimensions
Observing string breaking

Three gluons can screen the color of a fundamental quark

(7)⊗ (14)⊗ (14)⊗ (14) = (1)⊕ · · ·

One gluon can screen the color of an adjoint quark

(14)⊗ (14) = (1)⊕ · · ·

Confining string can break if

VR(Rc) = E ≈ 2mqg

Mass of a quark-gluon bound state

Can be obtained from the correlation function

C (T ) =

〈N(R)⊗
n=1

Fµν(x)

∣∣∣∣∣∣
R,a

R(Uxy )ab

N(R)⊗
n=1

F †µν(y)

∣∣∣∣∣∣
R,b

〉
∝ exp (−mqgT )
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Results in 3 dimensions
Observing string breaking

Lattice L× L× βT = 483, β = 30 and Polyakov loops (three level
algorithm)
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String breaking in the fundamental and adjoint representation

Björn H. Wellegehausen Confinement in G2 Gauge Theories 15 / 17

= [1, 0] = [0, 1] = [2, 0] = [1, 1] = [0, 2] = [3, 0] = [4, 0] = [2, 1]



Results in 3 dimensions
Observing string breaking

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 5 10 15 20

σ
R

(R
)

R

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20

σ
R

(R
)/
σ

[1
,0

](
R

)

R

Casimir scaling breaks down at large distances
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Conclusions

Casimir scaling at intermediate scales in 3 dimensions was confirmed for 8
different representations without smearing within 1 percent

String breaking at larger distances was seen in both fundamental
representations
B. Wellegehausen, A. Wipf, C. Wozar, Casimir Scaling and String Breaking in G2 Gluodynamics, arxiv:hep-lat 1006.2305 (2010)

Further results / Outlook

Casimir scaling in 4 dimensions also L. Liptak and S. Olejnik, Phys. Rev. D78 (2008)

Full phase diagram of the G2 gauge higgs model to be published soon

Effective G2 Polyakov Loop and spin models and their relation to G2

Yang-Mills theorie
B. Wellegehausen, A. Wipf, C. Wozar, Effective Polyakov Loop Dynamics for Finite Temperature G(2) Gluodynamics, Phys. Rev. D80 (2009)
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