Let's go dynamic : a quick journey through 2+1 simulations to understand χ SB

Sébastien Descotes-Genon

Laboratoire de Physique Théorique CNRS & Université Paris-Sud 11, 91405 Orsay, France

June 15 2010

イロト イロト イヨト イヨト

Sébastien Descotes-Genon (LPT-Orsay)

Let's go dynamic

15/6/10

$\chi {\rm PT}$ and lattice

 χ PT : structure of π , $K\eta$ interactions but not values of couplings Overlap with lattice ?

- Light masses for χPT , but unknown constants
- Heavier masses for lattice, but extrapolation

- In which region can we use χPT ?
- Can we learn from the lattice on chiral symmetry breaking ?

Three chiral limits of interest

n	n _u ,	$m_d \rightarrow 0$
$N_f = 3$:	$m_{s} ightarrow 0$
$N_f = 2$:	<i>m</i> s physical
$N_f = 2^{\text{lat}}$:	no dynamical

イロト イロト イヨト イヨト

Two versions $N_f = 2$: π only d.o.f(few param. & processes)of χ PT $N_f = 3$: π, K, η d.o.f(more param. & processes)

500

s

$$\Sigma(2;m_s) = \lim_{m_u,m_d
ightarrow 0} - \langle 0 | ar{u} u | 0
angle$$

$$\begin{cases} \Sigma(3) = \Sigma(2;0) \\ \Sigma(2) = \Sigma(2;m_s^{\text{phys}}) \\ \Sigma(2^{\text{lat}}) = \Sigma(2;\infty) \end{cases}$$

Sébastien Descotes-Genon (LPT-Orsay)

= 990

$$\Sigma(2; m_s) = \lim_{m_u, m_d \to 0} -\langle 0 | \bar{u} u | 0 \rangle \qquad \begin{cases} \Sigma(3) = \Sigma(2; 0) \\ \Sigma(2) = \Sigma(2; m_s^{\text{phys}}) \\ \Sigma(2^{\text{lat}}) = \Sigma(2; \infty) \end{cases}$$

$$\Sigma(2; m_s) = \Sigma(2; 0) + m_s \frac{\partial \Sigma(2; m_s)}{\partial m_s} + O(m_s^2)$$

= 990

$$\Sigma(2; m_s) = \lim_{m_u, m_d \to 0} -\langle 0 | \bar{u} u | 0 \rangle \qquad \begin{cases} \Sigma(3) = \Sigma(2; 0) \\ \Sigma(2) = \Sigma(2; m_s^{\text{phys}}) \\ \Sigma(2^{\text{lat}}) = \Sigma(2; \infty) \end{cases}$$

$$\Sigma(2) = \Sigma(3) + m_s^{\text{phys}} \lim_{m_u, m_d \to 0} i \int d^4 x \langle 0 | \bar{u} u(x) \bar{s} s(0) | 0 \rangle + O(m_s^2)$$

= 990

$$\Sigma(2; m_s) = \lim_{m_u, m_d \to 0} -\langle 0 | \bar{u} u | 0 \rangle \qquad \begin{cases} \Sigma(3) = \Sigma(2; 0) \\ \Sigma(2) = \Sigma(2; m_s^{\text{phys}}) \\ \Sigma(2^{\text{lat}}) = \Sigma(2; \infty) \end{cases}$$

$$\Sigma(2) = \Sigma(3) + m_s^{\text{phys}} \lim_{m_u, m_d \to 0} i \int d^4 x \langle 0 | \bar{u} u(x) \bar{s} s(0) | 0 \rangle + O(m_s^2)$$

 $\Sigma(2)$ contains

- A "genuine" condensate $\Sigma(3)$
- An "induced" condensate $m_s \times (\text{scalar})$ $1/N_c$ -suppressed) effect from sea ss-pairs

4

(similar analysis with $F^2(N_{f}) = \lim_{N \neq F} F^2_{\pi}$) Let's go dynamic 15/6/10

Sébastien Descotes-Genon (LPT-Orsay)

Which scenario for $N_f = 2$ and $N_f = 3$?

Analysis of fermion det in terms of Dirac eigenvalues: $\Sigma(3) \leq \Sigma(2)$

$$\begin{split} \Sigma(3) \simeq \Sigma(2) \text{ and } \langle (\bar{u}u)(\bar{s}s) \rangle \text{ small} \\ \text{Zweig rule OK for scalars} \\ \text{No impact of strange sea quarks} \\ \text{or} \\ \Sigma(3) < \Sigma(2) \text{ and } \langle (\bar{u}u)(\bar{s}s) \rangle \text{ large} \\ \text{Large Zweig-rule violation} \\ \text{Strange sea quarks important} \end{split}$$

In the scalar sector, Zweig rule and large- N_c badly violated described in $O(p_{\odot}^4)$ LECs L_4 and L_6

Sébastien Descotes-Genon (LPT-Orsay)

Indication from non-perturbative methods

Same analysis for two main order parameters of χSB

 $\Sigma(2) - \Sigma(3) \propto m_s L_6$ $F^2(2) - F^2(3) \propto m_s L_4$

- Large dispersive estimates of $\langle (\bar{u}u)(\bar{s}s) \rangle$: $\Sigma(3)/\Sigma(2) \simeq 1/2$
- Low-energy πK scattering from dispersive analysis of data yields $10^{3}L_{4}(M_{\rho}) = 0.53 \pm 0.39$ *B.Moussallam,SDG,P.Büttiker*
- Recent fits for NNLO $N_f = 3 \chi \text{PT}$ $10^3 L_4^r(M_\rho) = 0.86 \pm 0.86$ with issues in the convergence of chiral series (F(3)=62.4 MeV)
- Lattice with 2+1 dynamical flavours
 - MILC: $\Sigma(2)/\Sigma(3) \simeq 1.52(17)(^{+38}_{-15})$
 - PACS-CS: Large NLO contributions in $N_f = 3$ ChPT due to m_s
 - UKQCD-RBC: Hard to fit $K_{\ell 3}$ with $N_f = 3$ ChPT, use only $N_f = 2$

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ● ●

Consequences for three-flavour chiral series

$$F_{\pi}^{2} = F(3)^{2} + 16(m_{s} + 2m)B_{0}\Delta L_{4} + 16mB_{0}\Delta L_{5} + O(m_{q}^{2})$$

$$F_{\pi}^{2}M_{\pi}^{2} = \Sigma(3) + 64m[(m_{s} + 2m)B_{0}^{2}\Delta L_{6} + mB_{0}^{2}\Delta L_{8}] + O(m_{q}^{2})$$

•
$$B_0 = -\lim_{m_u, m_d, m_s \to 0} \langle \bar{u}u \rangle / F_{\pi}^2 = \Sigma(3) / F^2(3)$$
 $m = m_u = m_d$
• $\Delta L_i = L_i^r(M_{\rho}) + \chi \log \text{ scale-independent}$

If m_s -enhanced L_4^r , L_6^r are "large" (Zweig-rule violation in 0⁺⁺)

• Numerical competition between LO and NLO in F_P^2 , $F_P^2 M_P^2$ • Chiral series not saturated by LO: $F_\pi \approx F_0$, $M_\pi^2 \approx 2mB_0 \dots$ $\frac{1}{X_{LO} + X_{NLO}} \approx \frac{1}{X_{LO}} - \frac{X_{NLO}}{X_{LO}^2}$ $\sqrt{X_{LO} + X_{NLO}} \approx \sqrt{X_{LO}} + \frac{X_{NLO}}{2\sqrt{X_{LO}}}$

Choose/determine carefully observables with good convergence and how how write down/use their expansion

Sébastien Descotes-Genon (LPT-Orsay)

Let's go dynamic

15/6/10

NQ C

< 日 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Resummed χ PT

Large effect of $s\bar{s}$ pairs \implies weak convergence \implies $2mB_0 \approx M_\pi^2$

Resummed χ PT

Large effect of $s\bar{s}$ pairs \implies weak convergence $\implies 2mB_0 \sim M_\pi^2$

- Assume overall convergence for a subset of observables vector/axial correlators and derivatives away from singularities
- Leave open a numerical competition between LO and NLO while keeping track of (small) NNLO remainders
- Compute observables in terms of chiral LECs (*F*₀, *B*₀, *L_i*, *C_i*)
- Reexpress LECs in terms of $M_{\pi}^2, F_{\pi}^2...$ only if physical motivation (nonanalytic poles, cuts, unitarity...)

NQ C

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

Resummed χ PT

Large effect of $s\bar{s}$ pairs \implies weak convergence $\implies 2mB_0 \sim M_\pi^2$

- Assume overall convergence for a subset of observables vector/axial correlators and derivatives away from singularities
- Leave open a numerical competition between LO and NLO while keeping track of (small) NNLO remainders
- Compute observables in terms of chiral LECs (F₀, B₀, L_i, C_i)
- Reexpress LECs in terms of $M_{\pi}^2, F_{\pi}^2...$ only if physical motivation (nonanalytic poles, cuts, unitarity...)

Resummed Chiral Perturbation Theory

coping with competition between LO and NLO (identical to usual χ PT if LO almost saturates the chiral series)

SDG, Fuchs, Girlanda, Stern

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Observables: masses and decay constants

From
$$\langle A_{\mu}A_{\nu}\rangle$$
 and $\langle \partial^{\mu}A_{\mu}\partial^{\nu}A_{\nu}\rangle$
 F_{P}^{2} and $F_{P}^{2}M_{P}^{2}$ ($P = \pi, K$) expected to have small NNLO remainders

$$F_{\pi}^{2} = F_{\pi}^{2}Z(3) + 8Y(3)M_{\pi}^{2}[(r+2)\Delta L_{4} + \Delta L_{5}] + F_{\pi}^{2}e_{\pi}$$

$$F_{\pi}^{2}M_{\pi}^{2} = F_{\pi}^{2}M_{\pi}^{2}X(3) + 16Y^{2}(3)M_{\pi}^{4}[(r+2)\Delta L_{6} + \Delta L_{8}] + F_{\pi}^{2}M_{\pi}^{2}d_{\pi}$$

$$X(3) = \frac{2m\Sigma(3)}{F_{\pi}^{2}M_{\pi}^{2}} = \frac{LO(F_{\pi}^{2}M_{\pi}^{2})}{F_{\pi}^{2}M_{\pi}^{2}} \qquad r = \frac{m_{s}}{m}$$

$$Z(3) = \frac{F^{2}(3)}{F_{\pi}^{2}} = \frac{LO(F_{\pi}^{2})}{F_{\pi}^{2}} \qquad Y(3) = \frac{X(3)}{Z(3)} = \frac{2mB_{0}}{M_{\pi}^{2}}$$

$$\Delta L_{i} = L_{i} + \text{chiral logs:} \ \frac{1}{32\pi^{2}} \log \frac{M_{P}^{2}}{\mu^{2}} \qquad M_{P}^{2} = \text{LO}[M_{P}^{2}]$$

$$e_{P} \text{ and } d_{P} \text{ NNLO remainders } O(m_{s}^{2}) \text{ expected of order 10\%}$$

$$e_{D} \text{ and } e_{P} \text{ inverted:} \ L_{4,5,6,8} = \mathcal{F}[F_{\pi}, F_{K}, M_{\pi}, M_{K}, r, X(3); Z(3), 4 \text{ rem.}]$$

Observables: pion em and $K_{\ell 3}$ form factors

$$\begin{array}{lll} \langle \pi^{+}|j_{\mu}|\pi^{+}\rangle & = & (\rho+\rho')^{\mu}F_{V}^{\pi}(t) \\ \sqrt{2}\langle K^{+}|\bar{u}\gamma_{\mu}s|\pi^{0}\rangle & = & (\rho'+\rho)^{\mu}f_{+}^{K\pi}(t) + (\rho'-\rho)^{\mu}f_{-}^{K\pi}(t) \end{array}$$

From LSZ reduction to $\langle A_{\nu} V_{\mu} A_{\rho} \rangle$,

 $F_{\pi}^2 F_V^{\pi}, F_{\pi} F_K f_+(t), F_{\pi} F_K f_0(t)$ expected to have small NNLO remainders

$$F_{\pi}F_{\kappa}f_{+}(t) = \frac{F_{\pi}^{2} + F_{\kappa}^{2}}{2} + \frac{3}{2}[tM_{\kappa\pi}^{r}(t) + tM_{\kappa\eta}^{r}(t) - L_{\kappa\pi}(t) - L_{\kappa\eta}(t)] + 2tL_{9}^{r} + F_{\pi}F_{\kappa}d_{+} + te_{+}$$

- Ambiguity on F_0^2 at NLO fixed (replaced by $F_{\pi}F_{K}$)
- *M*, *L* one-loop scalar integrals, with cuts set at physical masses
- Similar expansion for *f*₀ (fulfilling explicitly Callan-Treiman)
- Similar expansion for F_{π}^{V} which can be inverted

$$L_9 = \mathcal{F}\left[\langle r^2 \rangle_{\pi}^V, r, X(3), Z(3), 1 \text{ rem.}\right]$$

QCD and lattice

Actual QCD: chiral expansions for obs. X with quark masses (m_s, m)

$$\begin{aligned} F_{\pi}^{2}, F_{K}^{2} &: \quad L_{4,5} = \mathcal{F}\left[r, X(3), Z(3), 2 \text{ rem.}\right] \\ F_{\pi}^{2} M_{\pi}^{2}, F_{K}^{2} M_{K}^{2} &: \quad L_{6,8} = \mathcal{F}\left[r, X(3), Z(3), 2 \text{ rem.}\right] \\ &\langle r^{2} \rangle_{\pi}^{V} &: \quad L_{9} = \mathcal{F}\left[r, X(3), Z(3), 1 \text{ rem.}\right] \end{aligned}$$

 $K_{\ell 3}$ form factors are functions of $t, r, X(3), Z(3), L_9, 4$ rem.

Lattice: same expansions for \tilde{X} with quark masses (\tilde{m}_s, \tilde{m})

- Previous relations used to remove L_{4,5,6,8,9}
- Chiral expansions for \tilde{X} depending only on

$$r, X(3), Z(3), \qquad p = \tilde{m}_s/m_s \qquad q = \tilde{m}/\tilde{m}_s$$

and on rescaled NNLO remainders

$$d = O(m_s^2) \rightarrow \tilde{d} = O(\tilde{m}_s^2) = p^2 d$$

イロト イポト イヨト イヨト 二日

Fit to RBC/UKQCD and PACS-CS lattice data [difficulties to fit NLO $N_f = 3$ chiral expansions]

- 2+1 simulations with observables as function of quark masses
- Observables for several $q = \tilde{m}/\tilde{m_s}$
 - $F_{\pi}^2, F_{\pi}^2 M_{\pi}^2$ (both)
 - $F_{\pi}F_{\kappa}f_{+}(t)$ and $F_{\pi}F_{\kappa}f_{0}(t)$ (RBC/UKQCD)
- Parameters to fit: r, X(3), Z(3), p, remainders and F_K/F_{π}
- Only statistical errors available, without correlations
 - naive χ^2 to minimise
 - no sophisticated treatment of systematics

V. Bernard, SDG, G. Toucas, in preparation

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

UKQCD/RBC data on π , K masses, decay csts and $K_{\ell 3}$ form factors Allton et al. 2008, Boyle et al. 2007, Boyle et al. 2010

- Domain-wall fermions, 1 spacing, 2 volumes, only statistical errors
- Take only unitary pts (unquenched), non-degenerate π , K masses
- Form factors with $t \ge -0.2 \text{ GeV}^{-2}$ (pions light enough, momenta small enough)

 24.6 ± 2.1 r X(3) 0.28 ± 0.10 Y(3) 0.56 ± 0.20 Z(3) 0.49 ± 0.05 F_K/F_{π} 1.18 ± 0.03 $\sqrt{\gamma^2}/N$ 3.4/6

- Good fit to data (stat errors only)
- 14 params (9 remainders small)
- LO do not saturate $N_f = 3$ series
- Ratio of decay constants lower than Allton et al.:

 $\textit{F}_{\textit{K}}\textit{/}\textit{F}_{\pi} = 1.205 \pm 0.018 \pm 0.062$

イロト イポト イヨト イヨト 三日

Fit to RBC/UKQCD data (2)

<i>m</i> _s (2 GeV)[MeV]	114.0 ± 4.5
<i>m</i> (2 GeV)[MeV]	$\textbf{4.7} \pm \textbf{0.3}$
$B_0(2 \text{ GeV})[\text{GeV}]$	$\textbf{1.19} \pm \textbf{0.44}$
F_0 [MeV]	64.7 ± 3.3
$\Sigma(2)/\Sigma(3)$	$\textbf{3.25} \pm \textbf{1.12}$
B(2)/B(3)	1.78 ± 0.57
F(2)/F(3)	1.35 ± 0.07
$f_0(0)$	0.984 ± 0.006
F_{π}^2	0.49 + 0.62 - 0.11
F_K^2	0.35 + 0.73 - 0.08
$F_{\pi}^2 M_{\pi}^2$	0.28 + 0.61 + 0.11
$F_K^2 M_K^2$	0.20 + 0.71 + 0.09

- Only statistical errors !
- Significant decrease of order parameters from N_f = 2 to N_f = 3 chiral limits [hence troubles with N_f = 3 χPT]
- $f_0(0)$ higher than value in Boyle et al. $f_0(0) = 0.960(\overset{+5}{e})$
- Convergence at χ^2_{min} NNLO \ll LO + NLO but LO \sim NLO

・ロト ・回ト ・ヨト・

[Similar fit with all data, with $\chi^2/N = 21.1/19$]

PACS-CS data on π , K masses and decay constants

Aoki et al. 2008

- O(a)-improved Wilson, 1 spacing, 1 volume, only statistical errors
- One-loop perturbative renormalisation (30% underestimation of quark masses compared to non-perturbative renormalisation)
 Aoki et al. 2009
- Take only 3 lightest values of the pion masses to ensure χPT valid

$$\begin{array}{rcc} r & 26.5 \pm 2.3 \\ X(3) & 0.59 \pm 0.20 \\ Y(3) & 0.90 \pm 0.22 \\ Z(3) & 0.66 \pm 0.08 \\ \overline{F_K/F_\pi} & 1.23 \pm 0.03 \\ \overline{\chi^2/N} & 0.9/3 \end{array}$$

- Good fit to data (stat errors only)
- 14 params (9 remainders small)
- LO do not saturate $N_f = 3$ series
- Ratio of decay constants higher than Aoki et al.:

 $\textit{F}_{\textit{K}} / \textit{F}_{\pi} = 1.189 \pm 0.020$

Fit to PACS-CS data (2)

<i>ms</i> (2 GeV)[MeV]	$\textbf{70.3} \pm \textbf{4.2}$
<i>m</i> (2 GeV)[MeV]	$\textbf{2.7}\pm\textbf{0.3}$
$B_0(2 \text{ GeV})[\text{GeV}]$	$\textbf{2.65} \pm \textbf{0.28}$
F_0 [MeV]	75.1 ± 4.2
$\Sigma(2)/\Sigma(3)$	1.52 ± 0.49
B(2)/B(3)	1.16 ± 0.26
F(2)/F(3)	1.15 ± 0.07
$f_0(0)$	1.004 ± 0.116
F_{π}^2	0.66 + 0.22 + 0.12
F_K^2	0.43 + 0.49 + 0.08
$F_{\pi}^2 M_{\pi}^2$	0.60 + 0.30 + 0.10
$F_{\kappa}^2 M_{\kappa}^2$	0.42 + 0.50 + 0.08

- Only statistical errors !
- Mild decrease of order parameters from N_f = 2 to N_f = 3 chiral limits [hence troubles with N_f = 3 χPT]
- f₀(0) as an outcome of the fit (no input from K_{ℓ3} form factors)
- Convergence at χ²_{min} NNLO ≪ LO + NLO but LO ~ NLO

・ロト ・ 同ト ・ ヨト ・ ヨト

[Similar fit with all data, with $\chi^2/N = 13.9/15$]

 F_{κ}/F_{π} and $f_{+}(0)$

Sébastien Descotes-Genon (LPT-Orsay)

Let's go dynamic

15/6/10 17

 F_{κ}/F_{π} and $f_{+}(0)$

Our fits include only stat errors and neglect correlations among observables

イロト イポト イヨト イヨト

 $f_{\rm K}/f_{\pi}$ N=0CP-PACS-98 0.05fm m >500MeV 1.156(29) 1.192(30) CP-PACS-03 a=0.11fm m >550MeV JLOCD-03 1.148(11)*12 Clove m >550MeV N = 2RBC-03 1175(11) DW m >550MeV OCDSE-07 1.219(26) Clow m >300MeV ETMC-08 1.227(9)(24) TWMF ETMC-09 1.210(6)(17) TWMF m >260MeV MTLC-04 1.210(14) Stag a=0.09fm m >300MeV MILC-07 1.197 -13 Stag 1.198(2)* Stag a=0.045fm m >177MeV NPLOCD-07 1.218 11 DWF/Stac N=2+1 RBC/UKOCD-07 .205(18)(62) .225(12)(14) m >290MeV PACS-CS-08 m_>156MeV 1.189(20) Thin Clover JLOCD/TWOCD-09 1.210(12) Overlap HPOCD/UKOCD-07 1.189(7) HISQ/Stag a=0.09fm m >240MeV at.vdw_09 1.192(12)(16) DWF/Stac BMW-09 1.192(7)(6) Fat Clover a=0.065fm m_>190MeV 111 14 11 120 123 126

Sébastien Descotes-Genon (LPT-Orsay)

Let's go dynamic

Comments and conclusions

• Two chiral limits of interest

 $egin{aligned} N_f &= 3: \, m_u, m_d, m_s
ightarrow 0 \ N_f &= 2: \, m_u, m_d
ightarrow 0, \, m_s \, \mbox{physical} \end{aligned}$

 $\Sigma(2) = \Sigma(3) + m_s \langle (\bar{u}u)(\bar{s}s) \rangle + O(m_s^2)$

- Role of sea ss̄-pairs ↔ N_f-dependence of order parameters
 ↔ Zweig rule violation in scalar sector
- $\bullet\,$ Weak convergence of chiral series: NNLO \ll LO+NLO, LO \sim NLO

Resummed Chiral Perturbation Theory to applied lattice data

- Good fits with a limited number of parameters
- Provide a decent alternative to the ansätze inspired by $N_f = 2 \chi$ PT used to extract $f_+(0)$ from the lattice
- $f_+(0)$ larger than usual lattice estimates, but closer to χPT ones
- Only stat errors, before $a \rightarrow 0, L \rightarrow \infty$, so no firm conclusions

Maybe worth having a try on your favourite 2+1 data ?

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sébastien Descotes-Genon (LPT-Orsay)

Let's go dynamic

2 15/6/10 19

590

One-loop resummed χ PT (1)

Green functions in one-loop generating functional

 $Z = Z_t + Z_u + Z_A$

"Bare" expansion in terms of LECs F_0, B_0, L_i ... with LO masses

$$\stackrel{\circ}{M}_{\pi}^{2} = Y(3)M_{\pi}^{2}, \; \stackrel{\circ}{M}_{K}^{2} = \frac{r+1}{2}Y(3)M_{\pi}^{2} \qquad r = \frac{m_{s}}{m}, Y(3) = \frac{2mB_{0}}{M_{\pi}^{2}}$$

Where $\stackrel{\circ}{M_P}^2 \rightarrow M_P^2$ in bare expansion ? Only if physically supported !

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

One-loop resummed χ PT (1)

Green functions in one-loop generating functional

 $Z = Z_t + Z_u + Z_A$

"Bare" expansion in terms of LECs F_0, B_0, L_i ... with LO masses

$$\stackrel{\circ}{M}_{\pi}^{2} = Y(3)M_{\pi}^{2}, \; \stackrel{\circ}{M}_{K}^{2} = \frac{r+1}{2}Y(3)M_{\pi}^{2} \qquad r = \frac{m_{s}}{m}, \, Y(3) = \frac{2mB_{0}}{M_{\pi}^{2}}$$

Where $\stackrel{\circ}{M}_{P}^{2} \rightarrow M_{P}^{2}$ in bare expansion ? Only if physically supported !

• *Z_u* one-loop graphs with two *O*(*p*²) vertices

Unitarity cuts at
$$(\mathring{M}_P + \mathring{M}_Q)^2$$

converging to $(M_P + M_Q)^2$
when higher orders into account

 \Rightarrow Replace $\stackrel{\circ}{M}_{P}^{2} \rightarrow M_{P}^{2}$ for the position of the cuts Z_{u} [i.e. in \overline{J}_{PQ}]

Sébastien Descotes-Genon (LPT-Orsay)

Let's go dynamic

One-loop resummed χ PT (2)

• Z_A purely topological, no chiral couplings

• Z_t tree and tadpole graphs

イロト イポト イヨト イヨト

- $O(p^2)$ and $O(p^4)$ tree graphs : chiral couplings
- tadpoles : factors of log modified by higher orders so keep

$$\frac{\overset{\circ}{M_P}}{32\pi^2}\log\frac{\overset{\circ}{M_P}}{\mu^2}$$

Why is it a resummation?

$$X(3) = \frac{2m\Sigma(3)}{F_{\pi}^2 M_{\pi}^2}, \quad Z(3) = \frac{F^2(3)}{F_{\pi}^2}, \quad r = \frac{m_s}{m}$$

$$F_{\pi}^2 = F_{\pi}^2 Z(3) + 8Y(3) M_{\pi}^2 [(r+2) \Delta L_4 + \Delta L_5] + F_{\pi}^2 e_{\pi}$$

$$F_{\pi}^2 M_{\pi}^2 = F_{\pi}^2 M_{\pi}^2 X(3) + 16Y^2 (3) M_{\pi}^4 [(r+2) \Delta L_6 + \Delta L_8] + F_{\pi}^2 M_{\pi}^2 d_{\pi}$$

590

< □ > < □ > < □ > < □ > < □ > .

Why is it a resummation?

$$X(3) = \frac{2m\Sigma(3)}{F_{\pi}^{2}M_{\pi}^{2}}, \quad Z(3) = \frac{F^{2}(3)}{F_{\pi}^{2}}, \quad r = \frac{m_{s}}{m}$$

$$F_{\pi}^{2} = F_{\pi}^{2}Z(3) + 8Y(3)M_{\pi}^{2}[(r+2)\Delta L_{4} + \Delta L_{5}] + F_{\pi}^{2}e_{\pi}$$

$$F_{\pi}^{2}M_{\pi}^{2} = F_{\pi}^{2}M_{\pi}^{2}X(3) + 16Y^{2}(3)M_{\pi}^{4}[(r+2)\Delta L_{6} + \Delta L_{8}] + F_{\pi}^{2}M_{\pi}^{2}d_{\pi}$$

$$Y(3) = \frac{2mB_{0}}{M_{\pi}^{2}} = \frac{2[1 - \epsilon(r) - d]}{[1 - \eta(r) - e] + \sqrt{[1 - \eta(r) - e]^{2} + k \times [2\Delta L_{6} - \Delta L_{4}]}}$$

$$k \simeq 32(r+2)\frac{M_{\pi}^{2}}{F_{\pi}^{2}} \qquad e, d \leftrightarrow e_{\pi,K}, d_{\pi,K}$$

15/6/10 22

590

▲ロト ▲摺ト ▲注ト ▲注ト

Why is it a resummation ?

$$X(3) = \frac{2m\Sigma(3)}{F_{\pi}^{2}M_{\pi}^{2}}, \quad Z(3) = \frac{F^{2}(3)}{F_{\pi}^{2}}, \quad r = \frac{m_{s}}{m}$$

$$F_{\pi}^{2} = F_{\pi}^{2}Z(3) + 8Y(3)M_{\pi}^{2}[(r+2)\Delta L_{4} + \Delta L_{5}] + F_{\pi}^{2}e_{\pi}$$

$$F_{\pi}^{2}M_{\pi}^{2} = F_{\pi}^{2}M_{\pi}^{2}X(3) + 16Y^{2}(3)M_{\pi}^{4}[(r+2)\Delta L_{6} + \Delta L_{8}] + F_{\pi}^{2}M_{\pi}^{2}d_{\pi}$$

$$Y(3) = \frac{2mB_{0}}{M_{\pi}^{2}} = \frac{2[1 - \epsilon(r) - d]}{[1 - \eta(r) - e] + \sqrt{[1 - \eta(r) - e]^{2} + k \times [2\Delta L_{6} - \Delta L_{4}]}}$$

$$k \simeq 32(r+2)\frac{M_{\pi}^{2}}{F_{\pi}^{2}} \qquad e, d \leftrightarrow e_{\pi,K}, d_{\pi,K}$$

If small vacuum fluctuations: k × [2△L₆ − △L₄] ≃ 0 and Y(3) ≃ 1 ⇒ usual (iterative and perturbative) treatment of chiral series

San

イロト イポト イヨト イヨト 一座

Why is it a resummation ?

$$X(3) = \frac{2m\Sigma(3)}{F_{\pi}^2 M_{\pi}^2}, \quad Z(3) = \frac{F^2(3)}{F_{\pi}^2}, \quad r = \frac{m_s}{m}$$

 $F_{\pi}^{2} = F_{\pi}^{2}Z(3) + 8Y(3)M_{\pi}^{2}[(r+2)\Delta L_{4} + \Delta L_{5}] + F_{\pi}^{2}e_{\pi}$ $F_{\pi}^{2}M_{\pi}^{2} = F_{\pi}^{2}M_{\pi}^{2}X(3) + 16Y^{2}(3)M_{\pi}^{4}[(r+2)\Delta L_{6} + \Delta L_{8}] + F_{\pi}^{2}M_{\pi}^{2}d_{\pi}$

$$Y(3) = \frac{2mB_0}{M_{\pi}^2} = \frac{2[1 - \epsilon(r) - d]}{[1 - \eta(r) - e] + \sqrt{[1 - \eta(r) - e]^2 + k \times [2\Delta L_6 - \Delta L_4]}}$$

$$k \simeq 32(r+2)\frac{M_{\pi}^2}{F_{\pi}^2} \qquad e, d \leftrightarrow e_{\pi,K}, d_{\pi,K}$$

If small vacuum fluctuations: k × [2△L₆ − △L₄] ≃ 0 and Y(3) ≃ 1 ⇒ usual (iterative and perturbative) treatment of chiral series

• But $k \simeq 1900$: ΔL_6 , $\Delta L_4 = O(10^{-3})$ yields shift of Y(3) from 1, \implies resummation of $k \times [2\Delta L_6 - \Delta L_4]$ needed

How big (or small) should be L_4 and L_6 ?

$$F_{\pi}^2 = F(3)^2 + 16(m_s + 2m)B_0 \triangle L_4 + 16mB_0 \triangle L_5 + O(m_q^2) = F^2(3) + O(m_q)$$

If NLO < LO, taking $L_4(M_{
ho}) = 0.5 \cdot 10^{-3}, L_5(M_{
ho}) = 1.4 \cdot 10^{-3},$

$$\frac{F(3)^2}{F_{\pi}^2} = \frac{F^2(3)}{F^2(3) + O(m_q)}$$

$$\rightarrow 1 - 8\frac{2M_K^2 + M_{\pi}^2}{F_{\pi}^2}\Delta L_4 - 8\frac{M_{\pi}^2}{F_{\pi}^2}\Delta L_5 + \dots$$

$$= 1 - 0.51(s\bar{s} \text{ pairs}) - 0.04(\text{other}) + O(p^4)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

How big (or small) should be L_4 and L_6 ?

$$F_{\pi}^2 = F(3)^2 + 16(m_s + 2m)B_0 \triangle L_4 + 16mB_0 \triangle L_5 + O(m_q^2) = F^2(3) + O(m_q)$$

If NLO < LO, taking $L_4(M_{
ho}) = 0.5 \cdot 10^{-3}, L_5(M_{
ho}) = 1.4 \cdot 10^{-3},$

$$\frac{F(3)^2}{F_{\pi}^2} = \frac{F^2(3)}{F^2(3) + O(m_q)}$$

$$\rightarrow 1 - 8 \frac{2M_K^2 + M_{\pi}^2}{F_{\pi}^2} \Delta L_4 - 8 \frac{M_{\pi}^2}{F_{\pi}^2} \Delta L_5 + \dots$$

$$= 1 - 0.51(s\bar{s} \text{ pairs}) - 0.04(\text{other}) + O(p^4)$$

 \implies NLO \sim LO : contradiction ! [same with $\Sigma(3)$, $F_{\pi}^2 M_{\pi}^2$ and L_6]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

How big (or small) should be L_4 and L_6 ?

$$F_{\pi}^2 = F(3)^2 + 16(m_s + 2m)B_0 \triangle L_4 + 16mB_0 \triangle L_5 + O(m_q^2) = F^2(3) + O(m_q)$$

If NLO < LO, taking $L_4(M_{
ho}) = 0.5 \cdot 10^{-3}, L_5(M_{
ho}) = 1.4 \cdot 10^{-3},$

$$\frac{F(3)^2}{F_{\pi}^2} = \frac{F^2(3)}{F^2(3) + O(m_q)}$$

$$\rightarrow 1 - 8 \frac{2M_K^2 + M_{\pi}^2}{F_{\pi}^2} \Delta L_4 - 8 \frac{M_{\pi}^2}{F_{\pi}^2} \Delta L_5 + \dots$$

$$= 1 - 0.51(s\bar{s} \text{ pairs}) - 0.04(\text{other}) + O(p^4)$$

 \implies NLO \sim LO : contradiction ! [same with $\Sigma(3)$, $F_{\pi}^2 M_{\pi}^2$ and L_6]

Positive $O(10^{-3})$ value of $L_4^r(M_\rho)$ (id for L_6) yields LO ~ NLO Safer to impose only weak convergence NNLO <
LO+NLO

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Dirac operator

In Euclidean QCD on a torus L^4 , Dirac operator can be diagonalised

$$H[G] \equiv D = \gamma_{\mu}(\partial_{\mu} + iG_{\mu}) \quad H\phi_n = \lambda_n[G]\phi_n \qquad |\lambda_n[G]| < C\frac{n^{1/4}}{L} \equiv \omega_n$$

$$\frac{\lambda_{\cdot n} \dots \lambda_{\cdot 3}}{\frac{1}{L} + \frac{1}{L} + \frac{1}{L} + \frac{1}{L} + \frac{1}{L} + \frac{1}{L} = \omega_n$$
modes

590

イロン イボン イヨン イヨン

The Dirac operator

In Euclidean QCD on a torus L^4 , Dirac operator can be diagonalised

$$H[G] \equiv D = \gamma_{\mu}(\partial_{\mu} + iG_{\mu}) \quad H\phi_n = \lambda_n[G]\phi_n \qquad |\lambda_n[G]| < C\frac{n^{1/4}}{L} \equiv \omega_n$$

$$\frac{\lambda_{\cdot n} \dots \lambda_{\cdot 3} \quad \lambda_{\cdot 2}\lambda_{\cdot 1} \quad 0 \quad \lambda_1 \quad \lambda_2 \quad \lambda_3 \quad \dots \quad \lambda_n}{\frac{1}{L} + \frac{1}{L} + \frac{1}{L$$

After integration over fermionic variables, a correlation function expressed as a statistical average over G

$$\ll \Gamma \gg \propto \int dG \ e^{-S_{YM}[G]} \prod_j \Delta(m_j|G) \ \hat{\Gamma}$$

with the fermionic determinant

$$\Delta(m_j|G) \propto m^{|\nu[G]|} \prod (m_j^2 + \lambda_n^2)$$

 $\langle n \rangle \langle n$

4 / 4

In the limit where $L \rightarrow \infty$ then $m \rightarrow 0$

$$\Sigma(N_f) = \lim \frac{1}{L^4} \ll \int dx \ Tr S_D(x, x | G) \gg = \lim \frac{1}{L^4} \ll \sum_n \frac{m}{m^2 + \lambda_n^2} \gg$$

Scalar density $\bar{q}q$ I $\Sigma(N_f)$ $\langle (\bar{u}u)(\bar{s}s) \rangle$

Eigenvalue density $\rho(\lambda) = \sum_{n} \delta(\lambda - \lambda_n[G])$ Average e.v. density around 0 Fluctuation of e.v. density around 0

San

In the limit where $L \rightarrow \infty$ then $m \rightarrow 0$

$$\Sigma(N_f) = \lim \frac{1}{L^4} \ll \int dx \ Tr S_D(x, x | G) \gg = \lim \frac{1}{L^4} \ll \sum_n \frac{m}{m^2 + \lambda_n^2} \gg$$

Scalar density $\bar{q}q$ Eigenvalue density $\rho(\lambda) = \sum_n \delta(\lambda - \lambda_n[G])$ $\Sigma(N_f)$ Average e.v. density around 0 $\langle (\bar{u}u)(\bar{s}s) \rangle$ Fluctuation of e.v. density around 0

For order parameters dominated by lowest Dirac e.v. like $\Sigma(N_f)$

- Dependence on m_s through fermionic determinant $\Delta(m_s|G)$
- IR end of fermionic determinant increasing function of m_s

$$\Delta_{IR}(m_s|\mathbf{G}) = \prod_{n>0}^{K} (m_s^2 + \lambda_n^2)$$

Sébastien Descotes-Genon (LPT-Orsay)

イロト イポト イヨト イヨト 二日

In the limit where $L \rightarrow \infty$ then $m \rightarrow 0$

$$\Sigma(N_f) = \lim \frac{1}{L^4} \ll \int dx \ Tr S_D(x, x | G) \gg = \lim \frac{1}{L^4} \ll \sum_n \frac{m}{m^2 + \lambda_n^2} \gg$$

Scalar density $\bar{q}q$ Eigenvalue density $\rho(\lambda) = \sum_n \delta(\lambda - \lambda_n[G])$ $\Sigma(N_f)$ Average e.v. density around 0 $\langle (\bar{u}u)(\bar{s}s) \rangle$ Fluctuation of e.v. density around 0

For order parameters dominated by lowest Dirac e.v. like $\Sigma(N_f)$

- Dependence on m_s through fermionic determinant $\Delta(m_s|G)$
- IR end of fermionic determinant increasing function of m_s

$$\Delta_{IR}(m_s|\mathbf{G}) = \prod_{n>0}^{K} (m_s^2 + \lambda_n^2)$$

 $\Sigma(2,0) < \Sigma(2,m_s)$

Sébastien Descotes-Genon (LPT-Orsay)

< ロ > < 同 > < 臣 > < 臣 > -

In the limit where $L \rightarrow \infty$ then $m \rightarrow 0$

$$\Sigma(N_f) = \lim \frac{1}{L^4} \ll \int dx \ Tr S_D(x, x | G) \gg = \lim \frac{1}{L^4} \ll \sum_n \frac{m}{m^2 + \lambda_n^2} \gg$$

Scalar density $\bar{q}q$ Eigenvalue density $\rho(\lambda) = \sum_n \delta(\lambda - \lambda_n[G])$ $\Sigma(N_f)$ Average e.v. density around 0 $\langle (\bar{u}u)(\bar{s}s) \rangle$ Fluctuation of e.v. density around 0

For order parameters dominated by lowest Dirac e.v. like $\Sigma(N_f)$

- Dependence on m_s through fermionic determinant $\Delta(m_s|G)$
- IR end of fermionic determinant increasing function of m_s

$$\Delta_{IR}(m_s|\mathbf{G}) = \prod_{n>0}^{K} (m_s^2 + \lambda_n^2)$$

$\Sigma(3) < \Sigma(2)$	Decrease of Σ due (similar effect for <i>F</i>	to sea $s\bar{s}$ -pairs $\bar{s}^2 = \dim_{N\bar{e}} F_{\pi}^2 = 1$	うく
ien Descotes-Genon (LPT-Orsav)	Let's ao dynamic	15/6/10	2

Vacuum fluctuations of ss pairs

$\begin{array}{rcl} \Sigma(2)\sim\Sigma(3) & + & \langle \bar{u}u\,\bar{s}s\rangle\\ & \mbox{Mean} & \& & \mbox{Fluctuations} \end{array}$

of the density of Dirac eigenvalues

3 × < E

Sébastien Descotes-Genon (LPT-Orsay)

Let's go dynamic

3 15/6/10 26

Vacuum fluctuations of *ss* pairs

$\Sigma(2) \sim \Sigma(3) + \langle \bar{u}u \, \bar{s}s \rangle$ Mean & Fluctuations

of the density of Dirac eigenvalues

Mean-field

- Large average, small fluct.
- Zweig rule not violated in 0⁺
- No impact of strange sea quarks

 $\Sigma(3) \simeq \Sigma(2)$

500

Ð.

Vacuum fluctuations of *ss* pairs

$\begin{array}{rcl} \Sigma(2)\sim\Sigma(3) & + & \langle \bar{u}u\,\bar{s}s\rangle \\ & \mbox{Mean} & \& & \mbox{Fluctuations} \end{array}$

of the density of Dirac eigenvalues

Mean-field

- Large average, small fluct.
- Zweig rule not violated in 0⁺
- No impact of strange sea quarks

 $\Sigma(3) \simeq \Sigma(2)$

Near a critical point

- Small average, large fluct.
- Large violation of Zweig rule
- Strange sea quarks important

 $\Sigma(3) < \Sigma(2)$

Dimensional estimate of NNLO remainders

- Denominator: inspired by resonance saturation $\propto 1/\Lambda_H^4$ with Λ_H hadronic scale corresponding to exchanged resonances
- Numerator: product of $2M_{\pi}^2, M_{K}^2, F_{\pi}^2$ for $O(m, m_s, m_q^0)$ terms

$$egin{aligned} d, e, d_K, e_K, d_+ &= rac{M_K^4}{\Lambda_H^4} & e_+ &= rac{M_K^2 F_\pi^2}{\Lambda_H^4} & e_\pi^V &= rac{6}{\langle r^2
angle_V^\pi} rac{M_\pi^2}{\Lambda_H^4} \ d', e', d_- &= rac{2M_\pi^2 M_K^2}{\Lambda_H^4} & e_- &= rac{2M_\pi^2 F_\pi^2}{\Lambda_H^4} \ d_\pi &= d - d' & e_\pi &= e - e' \end{aligned}$$

With $\Lambda_H = 0.85$ GeV, we get

- $O(m_s^2)$ remainders of order 10%
- O(mm_s) remainders of order 2%

イロト イヨト イヨト 一旦