Light meson form factors in $N_f = 2 + 1$ QCD with dynamical overlap quarks

T. Kaneko for JLQCD collaboration

KEK Theory Center

Graduate University for Advanced Studies

Lattice 2010, June 15, 2010

イロト イポト イヨト イヨト

	introduction	introduction
1. introduction		

light meson form factors

- pion form factors : $F_V^{\pi}(q^2)$ and $F_S^{\pi}(q^2)$
 - good testing ground for consistency with ChPT
 - determination of LECs : $F_V^{\pi}(q^2) \rightarrow L_9$, $F_S^{\pi}(q^2) \rightarrow 2L_4 + L_5$
- kaon EM form factors : $F_V^{K^+}(q^2)$ and $F_V^{K^0}(q^2)$
 - share (many) LECs with $F_V^{\pi^+}(q^2)$ (at NNLO) (cf. Bijnens-Talavera, 2002)
 - \circ only old experimental data (~ 1980) are available \Rightarrow calculate on lattice
- $K \rightarrow \pi$ form factor : $f_+(0)$
 - determination of CKM element $|V_{us}| \Rightarrow$ test of SM

lattice calculation

- 3-pt. function : (much) noisier than 2-pt. functions
- calculation with various choices of initial / final mesons; meson momenta; ...
- disconnected diagrams for $F^{\pi}_{S}(q^{2})$

	introduction	introduction
1. introduction		

this work

calculate light meson form factors in $N_f = 2 + 1 \text{ QCD}$

- overlap quarks \Rightarrow straightforward comparison w/ ChPT (a=0)
- all-to-all quark propagators
 - ⇒ precise calculation of various 3-pt. functions

measurements are on-going

this talk : preliminary analysis of currently available data

outline

- simulation method
- EM form factors
- scalar form factors
- weak decay form factors

イロト イポト イヨト イヨト

2.1 simulation method: configuration generation

configurations

• $N_f = 2 + 1 \text{ QCD}$

- Iwasaki gauge + overlap quarks w/ std. Wilson kernel H_W
- determinant to suppress zero modes: $det[H_W^2]/det[H_W^2 + \mu^2]$ ($\mu = 0.2$)
- β = 2.30: a = 0.1085(15) fm \leftarrow M_{Ω} as input (talk by Noaki)
- $16^3 \times 48$: $L \sim$ 1.74 fm

for form factors

- 4 m_{ud} : $M_{\pi} \simeq$ 310–560 MeV; $m_s =$ 0.080 : $m_{s, {
 m phys}} =$ 0.081
- in Q = 0 sector

effects of fixed topology to $F_V^{\pi+}$: small for $N_f = 2$ (JLQCD/TWQCD, 2009)

- 50 conf imes 50 HMC traj. for each (m_{ud} , m_s)
- local and smeared operators : $\phi_l(|\mathbf{r}|) = \delta_{\mathbf{r},\mathbf{0}}, \ \phi_s(|\mathbf{r}|) = \exp[-0.4|\mathbf{r}|]$
- ullet periodic boundary condition $\Rightarrow~0.5~{
 m GeV}^2 \lesssim |q^2| \lesssim 2.0~{
 m GeV}^2$

on-going : $24^3 \times 48$, reweighting w.r.t. m_s , twisted boundary conditions (TBCs) $\log c$

2.2 simulation method: measurements

all-to-all quark propagator (TrinLat, 2005)

- exact low-mode contribution : $D u^{(k)} = \lambda^{(k)} u^{(k)}$ ($k \le N_e = 160$)
- noise method : $D x^{(d)} = \eta^{(d)}$ (single noise vector diluted w.r.t color/spinor/t)

$$D^{-1} = \sum_{k=1}^{N_e} \frac{u^{(k)}}{\lambda^{(k)}} u^{(k)\dagger} + (1 - P_{\text{low}}) \sum_{d=1}^{N_d} x^{(d)} \eta^{(d)\dagger} = \sum_{k=1}^{N_v = N_e + N_d} v^{(k)} w^{(k)\dagger}$$
$$v^{(k)} = \{u^{(1)}/\lambda^{(1)}, ..., x^{(1)}/, ...\}, \quad w^{(k)} = \{u^{(1)}, ..., \eta^{(1)}, ...\}$$

connected 3-pt. functions

2.2 simulation method: measurements

pros and cons

τ

Iow-mode contribution :

dominates low-energy dynamics and is calculated exactly

- time-consuming steps : Lanczos and overlap solver
 - multi-shift solver for different m_{q,val}
 - do not have to repeat to calculate 3-pt. functions with different $\mathbf{p}^{(\prime)}, \phi^{(\prime)}, \dots$

$$C_{S,\phi \phi',\text{disc}}^{\pi\pi}(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}')$$

$$= \frac{1}{N_t} \sum_{t=1}^{N_t} \sum_{k,l=1}^{N_v} \mathcal{M}_{\pi,\phi'}^{(k,l)}(t + \Delta t + \Delta t'; \mathbf{p}') \mathcal{M}_{\pi,\phi}^{(l,k)}(t; -\mathbf{p})$$

$$\times \sum_{m=1}^{N_v} \mathcal{M}_{S,\phi_1}^{(m,m)}(t + \Delta t; \mathbf{p} - \mathbf{p}')$$

but, have to repeat for different boundary conditions

 ${\ensuremath{\bullet}}$ take average over source location $({\ensuremath{\mathbf{x}}},t)$ to (remarkably) improve statistical accuracy

イロト イポト イヨト イヨト

3.1.1 pion EM form factor : determination of $F_V^{\pi^+}(q^2)$

$$\langle \pi^+(p')|j_\mu|\pi^+(p)\rangle = (p+p')_\mu F_V^{\pi^+}(q^2)$$

ratio method

(S. Hashimoto, et al., 2000)

$$C_{V_4,\phi\phi'}^{\pi\pi}(\Delta t,\Delta t';\mathbf{p},\mathbf{p}') \quad \rightarrow \quad \frac{Z_{\pi,\phi}^*(|\mathbf{p}|) Z_{\pi,\phi'}(|\mathbf{p}'|)}{4E(p)E(p') Z_V} e^{-E(p)\Delta t} e^{-E(p')\Delta t'} \langle \pi(p') | V_4 | \pi(p) \rangle$$

$$C^{\pi}_{\phi\phi'}(\Delta t; \mathbf{p}) \to \frac{Z^{*}_{\pi,\phi}(|\mathbf{p}|) \, Z_{\pi,\phi'}(|\mathbf{p}'|)}{2E(p)} \, e^{-E(p)\Delta t}, \qquad Z_{\pi,\phi}(|\mathbf{p}|) = \langle O_{\pi,\phi}(\mathbf{p}) | \pi(p) \rangle$$

$$R_4(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}') = \frac{C_{V_4, \phi_5 \phi_5}^{\pi\pi}(\Delta t; \mathbf{p}, \mathbf{p}')}{C_{\phi_5 \phi_1}^{\pi}(\Delta t; \mathbf{p}) C_{\phi_1 \phi_5}^{\pi}(\Delta t'; \mathbf{p}')} = \frac{\langle \pi(p') | V_4 | \pi(p) \rangle}{Z_{\pi, \text{lcl}}^* Z_{\pi, \text{lcl}} Z_V}$$

$$F_V(\Delta t, \Delta t'; q^2) = \frac{2M_{\pi}}{E_{\pi}(p) + E_{\pi}(p')} \frac{R_4(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}')}{R_4(\Delta t, \Delta t'; \mathbf{0}, \mathbf{0})}$$

in this preliminary analysis

• use correlators w/
$$(\phi, \phi') = (\phi_s, \phi_s)$$

• use $E_{\pi}(p)$ calculated w/ dispersion relation

イロト イロト イヨト イヨト

EM form factors

pion EM form factor kaon EM form factor

3.1.1 pion EM form factor : determination of $F_V^{\pi^+}(q^2)$

effective value $F_V^{\pi^+}(\Delta t, \Delta t'; q^2)$

• data at arbitrary combinations of $(\Delta t, \Delta t')$

 \Leftrightarrow conventional : $\Delta t + \Delta t'$ fixed

• can take average over source location x

T. Kaneko

Statistical accuracy ∼ 1−3%

3.1.2 pion EM form factor : q^2 dependence

• close to VMD near $q^2 = 0 \Rightarrow$ include ho meson pole w/ measured mass

 \Rightarrow approximate deviation (higher poles/cuts) by generic polynomial form

$$F_V(q^2) = \frac{1}{1 - q^2/M_\rho^2} + c_1 q^2 + c_2 (q^2)^2 + c_3 (q^2)^3 = 1 + \frac{\langle r^2 \rangle_V}{6} q^2 + \dots$$

• do not fit based on ChPT : $O(q^6)$ (NNNLO) contribu. is small at $|q^2| \lesssim (0.550 \text{ GeV})^2$

• simulated pion masses : $M_{\pi}^2 \lesssim$ "(0.550 GeV)²"

 m_q dependence of $\langle r^2\rangle_V^{\pi^+}$ may be described by NNLO ChPT ?

Sac

< ∃ >

3.1.3 pion EM form factor : chiral fit of radius

in NLO ChPT (Gasser-Leutwyler, 1985) $\langle r^2 \rangle_V^{\pi^+} = \frac{2}{NF_0^2} (-3 + 24NL_9^r)$ $-2\nu_{\pi} - \nu_{K}$ $\nu_X = (1/2NF_0^2) \ln[M_Y^2/\mu^2]$ • $N = (4\pi)^2$; $\mu = 4\pi F_0$

- use $F_0 = 52$ MeV from $M_{\pi,K}$, $F_{\pi,K}$ (talk by Noaki)
 - \Leftrightarrow $F_0 = 88 \text{ MeV}$ (Bijnens, 2009)

- small effect of sea strange quarks
- small $F_0 \Rightarrow$ enhanced NLO log $\Leftrightarrow N_f = 2$
- NLO fit : large $\chi^2/dof \sim 11$
- $M_{\pi}^2/F^2 \Rightarrow \xi = M_{\pi}^2/F_{\pi}^2$: does not help ...
- NLO + anly : reduce χ^2/dof to ~ 2.8 , extrap. $\sim expr't \Rightarrow need NNLO$ analysis

イボト イヨト イヨト

3.2.1 kaon form factor : q^2 dependence

3.2.2 kaon EM form factor : chiral fit of radius

analysis to be extended to NNLO : $\langle r^2 \rangle_V^{\pi^+}$, $\langle r^2 \rangle_V^{K^+}$, $\langle r^2 \rangle_V^{K^0}$ share $O(p^6)$ LECs

Sac

4.1 scalar form factor: determination of $F_S^{\pi}(q^2)$

ratio method

$$\frac{F_S(\Delta t, \Delta t'; q^2)}{F_S(\Delta t, \Delta t'; 0)} \quad = \quad \frac{R_S(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}')}{R_S(\Delta t, \Delta t'; \mathbf{0}, \mathbf{0})} \; \Rightarrow \; \langle r^2 \rangle_S^{\pi}$$

$$R_{S}(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}') = \frac{C_{S,\phi_{S}\phi_{S},sngl}^{\pi\pi}(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}')}{C_{\phi_{S}\phi_{I}}^{\pi}(\Delta t; \mathbf{p}) C_{\phi_{I}\phi_{S}}^{\pi}(\Delta t'; \mathbf{p}')} = \frac{\langle \pi(p') | S | \pi(p) \rangle}{Z_{\pi,lcl}^{*} Z_{\pi,lcl} Z_{S}}$$

T. Kaneko

$$F_S(\Delta t, \Delta t'; 0) \quad \Leftarrow \quad C_{S, \text{sngl}}^{\pi\pi} = C_{S, \text{conn}}^{\pi\pi} - \left(C_{S, \text{disc}}^{\pi\pi} - C_{S, \text{vev}}^{\pi\pi}\right) \quad \text{at } q^2 = 0$$

 $\frac{F_{S}(\Delta t, \Delta t'; q^{2})}{F_{S}(\Delta t, \Delta t'; q^{2}_{ref})} = \frac{R_{S}(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}')}{R_{S}(\Delta t, \Delta t'; \mathbf{1}, \mathbf{0})} \quad (\text{normalized } @ |\mathbf{p}| = 1, |\mathbf{p}'| = 0)$

Light meson form factors in Nf=2+1 QCD with dynamical overlap quarks

4.2 scalar form factor: effective plot ; q^2 dependence

effective value

q^2 dependence

• statistical accuracy $\sim 5-10\% \Rightarrow C_{S,\text{disc}}^{\pi\pi}, C_{S,\text{VEV}}^{\pi\pi}$

• q^2 dependence : lack of knowledge on scalar resonances at simulated m_q \Rightarrow use simple/generic polynomial form $\Rightarrow \chi^2/dof \sim 1$

$$F_{S}(q^{2}) = 1 + \frac{\langle r^{2} \rangle_{S}}{6} q^{2} + c_{S} (q^{2})^{2} \left[+ d_{S} (q^{2})^{3} \right]$$

4.3 scalar form factor: chiral fit of radius

• In NLO ChPT (Gasser-Leutwyler, 1985) $\langle r^2 \rangle_S^{\pi} = \frac{1}{NF_0^2} \{-8 + 24N(2L_5^r + L_4^r)\}$ $-12 \nu_{\pi} - 3 \nu_K$ • $N = (4\pi)^2; \quad \mu = 4\pi F_0$ • use $F_0 = 52$ MeV

- small effect of sea strange quarks
- $N_f = 2$ and $N_f = 2 + 1$: $\langle r^2 \rangle_S^{\pi}$ has 6 times larger NLO log than $\langle r^2 \rangle_V^{\pi}$
- $N_f = 2 + 1$: small F_0 further enhances chiral log

 \Rightarrow fail to reproduce lattice data ($\chi^2/dof \sim 100$)

• need NNLO corrections cf. much smaller $\chi^2/dof \sim 7$ by including NNLO analytic

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Sac

5.1 $K \rightarrow \pi$ form factor: determination of $f_{0,+}(q^2)$

$$\langle \pi^+(p')|V_{\mu}|K^0(p)\rangle = (p+p')_{\mu}f_+(q^2) + (p-p')_{\mu}f_-(q^2), \quad f_0(q^2) = f_+(q^2) + \frac{q^2}{M_K^2 - M_\pi^2}f_-(q^2)$$

ratio method

use ratios employed in previous studies (Bećirević et al., 2005; JLQCD, 2006; RBC, 2006)

$$R = \frac{C_{V_4}^{K\pi}(\Delta t, \Delta t'; \mathbf{0}, \mathbf{0}) C_{V_4}^{\pi K}(\Delta t, \Delta t'; \mathbf{0}, \mathbf{0})}{C_{V_4}^{KK}(\Delta t, \Delta t'; \mathbf{0}, \mathbf{0}) C_{V_4}^{\pi \pi}(\Delta t, \Delta t'; \mathbf{0}, \mathbf{0})} \to \frac{(M_K + M_\pi)^2}{4M_K M_\pi} f_0(q_{\max}^2)^2 \ (q_{\max}^2 = (M_K - M_\pi)^2)$$

$$\tilde{R} = \frac{C_{V_4}^{K\pi}(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}')C^{\pi}(\Delta t, \mathbf{0}) C^{\pi}(\Delta t', \mathbf{0})}{C_{V_4}^{K\pi}(\Delta t, \Delta t'; \mathbf{0}, \mathbf{0})C^{\pi}(\Delta t, \mathbf{p}) C^{\pi}(\Delta t', \mathbf{p}')} \rightarrow \left\{1 + \frac{E_K(\mathbf{p}) - E_{\pi}(\mathbf{p}')}{E_K(\mathbf{p}) + E_{\pi}(\mathbf{p}')}\xi(q^2)\right\} \frac{f_+(q^2)}{f_0(q^2_{\max})}$$

$$R_{k} = \frac{C_{V_{k}}^{K\pi}(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}')C_{V_{4}}^{KK}(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}')}{C_{V_{4}}^{K\pi}(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}')C_{V_{k}}^{KK}(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}')} \rightarrow \text{a function of } \xi(q^{2}) \quad (\xi(q^{2}) = f_{-}(q^{2})/f_{+}(q^{2}))$$

 \Rightarrow can construct $f_+(q^2)$ and $f_0(q^2)$

5.2 $K \rightarrow \pi$ form factor: q^2 dependence

described reasonably well by polynomial, free-pole, free-pole + poly forms

$$f_X(q^2) = f_X(0) \left\{ 1 + c_{X,1}q^2 + c_{X,2}(q^2)^2 + [c_{X,3}(q^2)^3] \right\}, \quad \frac{f_X(0)}{1 - q^2/M_{X,\text{pole}}^2}, \dots \quad (X = 0, +)$$

• $f_+(0) = f_0(0)$

• \lesssim 1 % deviation in $f_+(0) \Rightarrow$ to be confirmed w/ TBC

5.3 $K \rightarrow \pi$ form factor: q^2 dependence

$$f_X(q^2) \quad = \quad f_X(0) + c_{X,1}q^2 + c_{X,2}q^2 + ..., \quad \lambda'_X = M_\pi^2 c_{X,1} \quad (X=0,+)$$

- mild quark mass dependence : $m_{s,sim} m_{s,phys} \Rightarrow$ not large effect (?)
- reasonably consistent with experiment (PDG,2008)
- o curvature

$$\lambda_{+}^{\prime\prime} = 2c_{+,2}M_{\pi}^{4} = 0.08\,(0.10) \times 10^{-2} \quad \Leftrightarrow \quad 0.20(0.05) \times 10^{-2} \,\,(\text{expr't})$$

ratio method q^2 dependence chiral behavior

5.4 $K \rightarrow \pi$ form factor: chiral behavior

• $f_{+}(0)$: $\Gamma \propto |V_{us}f_{+}(0)|^{2}$

• smaller $M_{\pi}^2 \Rightarrow q_{\text{max}}^2$ deviates from 0 \Rightarrow larger uncertainty of $f_{\pm}(0)$

to be improved by using TBC on larger volume

(and reweighting of m_s)

イロト イボト イヨト イヨ

6. summary

light meson form factors in $N_f = 2 + 1$ QCD with overlap quarks

- w/ all-to-all propagators
 - can re-use to calculate various observables : $F_{\{V,S\}}^{\pi}$, $F_{V}^{\{K^+,K^0\}}$, $f_{\{+,0\}}$
 - precise determination : exact low-mode + average over source location
- overlap action \Rightarrow comparison w/ a = 0 ChPT
 - NLO ChPT fits : fail to reproduce $\langle r^2 \rangle_V^{\pi}$ and $\langle r^2 \rangle_{G}^{\pi}$

• extension to NNLO (cf. $N_f = 2$: JLQCD/TWQCD, 2009) very complicated form w/ many $O(p^6)$ couplings

 \Rightarrow simultaneous fit to different observables : *cf.* $\langle r^2 \rangle_V^{\{\pi^+,K^+,K^0\}}$

- being extended to ... 0
 - larger volume $24^3 \times 48$: $M_{\pi}L \gtrsim 4$ at all m_{ud} 's
 - twisted boundary conditions : important for $f_+(0)$, $F_V^{K^0}$
 - non-trivial topological sectors
 - other observables : *cf.* pion strange form factor $\langle \pi | \bar{s}s | \pi \rangle \Rightarrow L_4^r$