Charmonium spectral functions in quark-gluon plasma from lattice QCD with large spatial volume

Chiho NONAKA, Nagoya University LQGP collaboration M.Asakawa(Osaka), T.Hoshino(Nagoya), M.Kitazawa(Osaka), Y.Kohno(Osaka)

June 15, 2010@lattice2010

Quark-Gluon Plasma

J/Ψ Suppression

• QGP signature in heavy ion collisions Matsui and Satz, Miyamura... '86

- Current situation
 - charmoia in medium
 - J/ Ψ survives at T ~1.7T_c, Asakawa, Hatsuda, Umeda,.....

QGP

 J/Ψ

D

Relativistic heavy ion collisions

C.NONAKA

space-time expansion

temperature ~ 200 MeV charmonia ~ 3.0 GeV

open charm

Charmonia in Heavy Ion Collisions

- Spectral functions with finite momentum
- Ill-posed problems

$$C(T, \vec{p}) = \sum_{x} \exp(i\vec{p} \cdot \vec{x}) \langle O_{\Gamma}(\vec{x}, t) \Gamma O_{\Gamma}^{\dagger}(\vec{0}, 0) \rangle$$
$$O_{\Gamma}(\vec{x}, t) = \bar{\Psi}(\vec{x}, t) \Gamma \psi(\vec{x}, t)$$

C.NONAKA

- MEM solution: maximum of $\alpha S L$
- Error analysis : essential in MEM analysis

Parameters

• Actions

Asakawa, Hatsuda PRL

- standard plaquette action, Wilson fermion
- quenched approximation
 heavy flavor
- Lattice sizes
 - anisotropic lattice: $\xi = a_{\sigma}/a_{\tau} = 4$
 - $-\beta$ =0.7. a_r=9.75×10⁻³ fm

PACS-CS@Tsukuba Blue Gene@KEK

– large spatial volume: $N_{\sigma} X N_{\tau} = 64^3 X N_{\tau}, P_{min} \sim 0.5 \text{ GeV}$

N _t (T/Tc)	96 (0.78)	54 (1.38)	46 (1.62)	44 (1.70)	42 (1.78)	40 (1.87)	32 (2.33)
# of conf.			400	400	400	400	400
# of correlator			343			393	

heat bath : overrelaxation=1:4

1000 sweeps between measurements

C.NONAKA

Parameters

Asakawa, Hatsuda, PRL92

C.NONAKA

PS Channel

κ=0.08285 η_c

- At T=1.62 T_c a clear peak exists around 3~4 GeV
- η_c melts between T=1.62T_c and T=1.87T_c

C.NONAKA

Vector Channel

κ =0.08285 J/ Ψ

- At T=1.62 T_c a clear peak exists around ~4 GeV
- The shape of J/ Ψ spectral function changes.

C.NONAKA

Spectral Functions with Error bar

C.NONAKA

Dispersion Relation

C.NONAKA

Spectral Functions at T=1.87T_c

C.NONAKA

Summary

- Charmonia in Relativistic Heavy Ion Collisions
 - spectral functions with large spatial volume
 - at p=0 (T=1.62Tc, T=1.87Tc)
 - η_c , J/ Ψ survive even above the critical temperature
 - \leftarrow consistent with the previous studies
 - at p≠0 (T=1.62Tc)
 - η_c : stable, medium effect
- To Do
 - check at other temperatures : T = 0.78. 1.38, 1.70. 1.78, 2.33 T_c
 - statistics (V channel)
- Future
 - dilepton productions experimental data (NA60@SPS, PHENIX@RHIC) ex. light mesons (ρ , ω ...)

C.NONAKA

Backup

C.NONAKA

Soft Scale

• *p*_{min} on the lattice

$$p_{\min} = \frac{2\pi}{L_{\sigma}} = 2\pi \frac{\xi N_{\sigma}}{N_{\tau}} T$$

•anisotropy : $\xi = 4$ •lattice size : $N_{\sigma}^{3} \times N_{\tau} = 64^{3} \times N_{\tau}$ $N_{\tau} = 96,54,46,44,42,40,32$

MEM: N_τ > 30
 realistic computational time
 @ PACS-CS, Blue Gene

Lattice2010

