Quantum entanglement in SU(3) lattice Yang-Mills theory at zero and finite temperatures

Yoshiyuki Nakagawa

Graduate School of Science and Technology,

Niigata University, Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan

in collaboration with

A. Nakamura (RIISE, Hiroshima University) N. Motoki (Hiroshima University) V.I. Zakharov (ITEP, MPI)

The XXVIII International Symposium on Lattice Field Theory,

Sardinia, Italy, 6/18/2010

KORK ERKER ADE YOUR

— Outline —

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \blacktriangleright Entanglement entropy
- \blacktriangleright Replica method
- \blacktriangleright Some examples
- \blacktriangleright Numerical results
- \blacktriangleright Summary and outlook

— Entanglement entropy : introduction —

- \triangleright Measures how much a given quantum state is entangled quantum mechanically.
- \triangleright A non-local quantity like the Wilson loop as opposed to correlation functions
- \triangleright We can probe the quantum properties of the ground state for a quantum system (quantum spin system, quantum Hall liquid,. . .).
- \blacktriangleright Proportional to the degrees of freedom
- \triangleright The entanglement entropy can be used as an order parameter

4 D > 4 P + 4 B + 4 B + B + 9 Q O

 \triangleright Applications: quantum information and computing, condensed matter physics, ...

— Entanglement entropy : in quantum field theory —

- Divide spacetime into two regions A and B
- \blacktriangleright The reduced density matrix of the ground state

$$
\rho_A = \mathsf{Tr}_B \, \rho = \mathsf{Tr}_B \, |0\rangle\langle 0|
$$

KORK ERKER ADE YOUR

- ρ_A can be regarded as the density matrix for an observer who can only access to the subsystem A.
- \blacktriangleright The entanglement entropy as the von Neumann entropy

$$
S_A(I) = -\operatorname{Tr}_A(\rho_A \ln \rho_A)
$$

- How to calculate the entanglement entropy?
	- 1. replica method [Carabrese and Cardy, 2004]
	- 2. holography [Ryu and Takayanagi, 2006]

 \blacktriangleright The entanglement entropy (Tr_{A $\rho_A = 1$)}

$$
S_A(I) = -\operatorname{Tr}_A(\rho_A \ln \rho_A)
$$

= -\lim_{n \to 1} \frac{\partial}{\partial n} \ln \operatorname{Tr}_A \rho_A^n

 \blacktriangleright Entanglement entropy can be expressed as

$$
S_A(l) = -\lim_{n \to 1} \frac{\partial}{\partial n} \ln \left(\frac{Z(l, n)}{Z^n} \right)
$$

$$
= -\lim_{n \to 1} \frac{\partial}{\partial n} F[l, n] + F
$$

where $Z(l, n)$ is the partition function on the n-sheeted Riemann surface.

KORK STRAIN A BAR SHOP

— Some examples —

 \blacktriangleright For $(1 + 1)$ -dimensional model at the critical point (CFT), [Holzhey, Larsen and Wilczek, 1994, Calabrese and Cardy, 2004]

$$
S_A(I)=\frac{c}{3}\log\frac{I}{a}+c'_1,
$$

where c is the central charge of CFT, a the UV cutoff.

- \triangleright S_A is the amount of quantum correlations between subregions.
- **If** S_A can serve as an order parameter for a quantum phase transition.

— Entanglement entropy : holographic approach —

In $(3 + 1)$ -dimensional $\mathcal{N} = 4$ SYM [Ryu and Takayanagi, 2006]

$$
\frac{1}{|\partial A|} \frac{\partial S_A(l)}{\partial l} = 2N_c^2 \frac{c}{l^3}, \qquad c \simeq \begin{cases} 0.051 & \text{AdS result} \\ 0.078 & \text{free field} \end{cases}
$$

nonanalytic behavior for confining backgrounds:

[Klebanov, Kutasov and Murugan, 2008]

- \blacktriangleright Klebanov-Strassler
- \triangleright D4-branes on a circle
- \triangleright D3-branes on a circle $((2 + 1)$ -dim. theory)
- ► Soft wall model $(e^{-z^2}$ dilaton)

 \triangleright Other behavior for backgrounds:

- \blacktriangleright Maldacena-Nunez
- \blacktriangleright Hard wall model
- ► Soft wall model (e^{-z^n})

$-$ Entanglement entropy : in lattice gauge theory $-$

- \blacktriangleright (Exactly solvable) $(1 + 1)$ -dimensional $SU(N_c)$ lattice gauge theory analytic behavior (independent of ℓ) [Velytsky, 2008]
- \triangleright (3 + 1)-dimensional $SU(2)$ lattice gauge theory treated within Migdal-Kadanoff approximation
	- ⇒ nonanalytic change at $l_cT_c \in (1.56, 1.66)$ [Velytsky, 2008]

 Ω

— Lattice QCD simulations —

 \triangleright SU(3) quenched lattice simulations

5000 sweeps for thermalization, measurement every 100 sweeps, 3000 \sim 10000 confs.

 \triangleright Pseudo heat-bath MC update: Wilson plaquette action

$$
\mathsf{S}_\mathsf{W} = \beta \sum_{\mathsf{p}} \left(1 - \frac{1}{2N_c} \mathsf{Tr}(U_{\mathsf{p}} + U_{\mathsf{p}}^\dagger) \right)
$$

 \triangleright Mesure the derivative of $S_A(l)$ with respect to l

$$
\frac{\partial S_A(I)}{\partial I} = \frac{\partial}{\partial I} \left[-\lim_{n \to 1} \frac{\partial}{\partial n} \ln \left(\frac{Z(I, n, T)}{Z^n(T)} \right) \right]
$$

$$
= \lim_{n \to 1} \frac{\partial}{\partial I} \frac{\partial}{\partial n} F[I, n, T]
$$

— Lattice QCD simulations —

 \blacktriangleright Estimate the derivative by

$$
\frac{\partial S_A(l)}{dl} = \lim_{n \to 1} \frac{\partial}{\partial l} \frac{\partial}{\partial n} F[A, n] \n\to \frac{\partial}{\partial l} \lim_{n \to 1} \left(F[l, n+1] - F[l, n] \right)
$$

$$
\rightarrow \frac{F[l+a,2]-F[l,2]}{a}
$$

— Lattice QCD simulations —

Differneces of free energies Endrodi et al., PoS LAT2007]

$$
Z(\alpha) = \int \mathscr{D}\phi \exp(-(1-\alpha)S_1[\phi] - \alpha S_2[\phi])
$$

$$
F_2-F_1=-\int_0^1d\alpha\frac{\partial}{\partial\alpha}\ln Z(\alpha)=\int_0^1d\alpha\left\langle S_2[\phi]-S_1[\phi]\right\rangle_\alpha
$$

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm \end{array} \right.$

 2990

G.

• Contribution from $\alpha > 0.5$ and $\alpha < 0.5$ almost cancel.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

— Results: derivative of $S_A(l)$ wrt l —

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A$ 2990

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{B} + \math$ 2990

• No clear discontinuity has been observed.

— Entanglement entropy at finite temperature —

 \blacktriangleright Entanglement entropy

$$
S_A = -\operatorname{Tr}_A(\rho_A \ln \rho_A), \quad \rho_A = \operatorname{Tr}_B(\rho_{total}),
$$

 \triangleright A thermal state is a mixed state.

$$
\rho_{AB} = \sum_{n} \exp\left(-\frac{E_n}{T}\right) |n\rangle\langle n|
$$

For $(1 + 1)$ -dimensional CFT at finite temperature $T = 1/\beta$,

$$
S_A(I) = \frac{c}{3} \log \left(\frac{\beta}{\pi a} \sinh \frac{\pi I}{\beta} \right) + c_1' = \begin{cases} \frac{c}{3} \log \frac{I}{a} + c_1' & I \ll \beta, \\ \frac{\pi c}{3\beta}I + c_1' & I \gg \beta. \end{cases}
$$

 \triangleright At sufficiently large *l* (or in the high temperature limit), S_A reduces to the thermal entropy. 4 D > 4 P + 4 B + 4 B + B + 9 Q O Results: dS_A/dI at finite temperatures (below T_c)

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z}) $2Q$ B

— Results: $dS_A/d\mathsf{l}$ at finite temperatures (above \mathcal{T}_c) —

KORK STRAIN A BAR SHOP

Results: dS_A/dl at finite temperatures —

— Summary and outlook —

- \triangleright We discussed the entanglement entropy in SU(3) pure YM theory.
- \triangleright Entanglement entropy measures amount of quantum correlations between subregions
- ▶ $\partial S/\partial l$ behaves as $1/l^3$ at small *l*, and vanishes at large *l*.
- \triangleright Discontinuity has not been observed at zero temperature.
- \triangleright In the deconfinement phase, entanglement entropy approaches to a finite value at large *l*, comparable to the thermal entropy.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

— Summary and outlook —

- \blacktriangleright We have to examine
	- discretization errors (with an improved gauge action)
	- systematic errors ($n > 2$ cut simulations)
- Interesting to calculate the entanglement entropy in
	- compact QED (confinement phase and Coulomb phase)

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

• full QCD

— Entanglement entropy : definition —

- \triangleright Divide a system into two subsystems A and B
- \blacktriangleright The density matrix on A is defined by

 $\rho_A = \text{Tr}_B (\rho_{AB}),$

i.e., by tracing over the states of the subsystem B.

- ρ_A can be regarded as the density matrix for an observer who can only access to the subsystem A.
- Entanglement entropy as the von Neumann entropy

$$
S_A = -\operatorname{Tr}_A(\rho_A \ln \rho_A)
$$

KORK ERKER ADE YOUR

— Entanglement entropy : a simple example —

 \blacktriangleright Two spin 1/2 particles

 \blacktriangleright For a separable (product) state, e.g.,

$$
|\psi\rangle = \frac{1}{\sqrt{2}} (|\!\uparrow\rangle_A + |\!\downarrow\rangle_A) \otimes |\!\uparrow\rangle_B \implies S_A = 0
$$

 \blacktriangleright For an entangled state, e.g.,

$$
|\psi\rangle = \frac{1}{\sqrt{2}} (|\!\uparrow\rangle_A \otimes |\!\downarrow\rangle_B + |\!\downarrow\rangle_A \otimes |\!\uparrow\rangle_B) \implies S_A = \ln 2
$$

— Entanglement entropy : a simple example —

▶ Consider two spin 1/2 particles $(|a|^2 + |b|^2 + |c|^2 + |d|^2 = 1)$

$$
\left|\psi\right\rangle = a\begin{pmatrix}1\\0\end{pmatrix}\begin{pmatrix}1\\0\end{pmatrix}_{\!\!B}+b\begin{pmatrix}1\\0\end{pmatrix}_{\!\!A}\begin{pmatrix}0\\1\end{pmatrix}_{\!\!B}+c\begin{pmatrix}0\\1\end{pmatrix}_{\!\!A}\begin{pmatrix}1\\0\end{pmatrix}_{\!\!B}+d\begin{pmatrix}0\\1\end{pmatrix}_{\!\!A}\begin{pmatrix}0\\1\end{pmatrix}_{\!\!B}
$$

If The density matrix $\rho_{AB} = |\psi\rangle \langle \psi|$ is given by

$$
\rho_{AB}=aa^*\begin{pmatrix}1&0\\0&0\end{pmatrix}_A\begin{pmatrix}1&0\\0&0\end{pmatrix}_B+ab^*\begin{pmatrix}1&0\\0&0\end{pmatrix}_A\begin{pmatrix}0&1\\0&0\end{pmatrix}_B+\cdots
$$

 \blacktriangleright The reduced density matrix $\rho_A = iS$

$$
\rho_A = \text{Tr}_B(\rho_{AB}) = \begin{pmatrix} aa^* + bb^* & ac^* + bd^* \\ ca^* + db^* & cc^* + dd^* \end{pmatrix}
$$

— Entanglement entropy : a simple example —

 \blacktriangleright The eigenvalues of the density matrix ρ_A are

$$
\lambda_{\pm}=\frac{1}{2}\left(1\pm\sqrt{1-4|ad-bc|^2}\right)
$$

 \blacktriangleright The entanglement entropy is

$$
S_A = -\operatorname{Tr}_A(\rho_A \ln \rho_A) = -\sum_i \lambda_i \ln \lambda_i
$$

 \blacktriangleright For a separable (product) state, e.g.,

$$
|\psi\rangle = \frac{1}{\sqrt{2}} (|\!\uparrow\rangle_A + |\!\downarrow\rangle_A) \otimes |\!\uparrow\rangle_B \implies S_A = 0
$$

 \blacktriangleright For an entangled state, e.g.,

$$
|\psi\rangle = \frac{1}{\sqrt{2}} (|\!\uparrow\rangle_A \otimes |\!\downarrow\rangle_B + |\!\downarrow\rangle_A \otimes |\!\uparrow\rangle_B) \implies S_A = \ln 2
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

— Analyticity of Tr ρ_A —

See [Calabrese and Cardy, quant-ph/0505193]

$$
\operatorname{Tr}\rho_A^n=\frac{Z(l,n,T)}{Z^n(T)},
$$

$$
\operatorname{Tr}\rho_A^n=\sum_i\lambda_i,\qquad 0\leq\lambda_i<1
$$

- Tr ρ_A^n is absolutely convergent and analytic for all $\Re \epsilon n > 1$.
- \blacktriangleright The derivative with respect to *n* exists and analytic in the region.
- ► If $\rho_A = -\sum_i \lambda_i$ In λ_i is finite, then the limit as $n \to 1^+$ of the first derivative coverges to ρ_A .
- \blacktriangleright $Z(l, n, T)/Z^{n}(T)$ has a unique analytic continuation to \Re e $n > 1$.

KORKAR KERKER E VOOR

 \blacktriangleright The entanglement entropy

$$
S_A(I) = -\operatorname{Tr}_A(\rho_A \ln \rho_A)
$$

can be written as $(Tr_A \rho_A = 1)$

$$
S_A(I) = -\lim_{n \to 1} \frac{\partial}{\partial n} \ln \mathrm{Tr}_A \, \rho_A^n
$$

► The total density matrix ρ is $(Z(T) = Tr \exp(-\beta H))$

$$
\rho[\phi''(\vec{x}), \phi'(\vec{x})] = Z^{-1}(T) \langle \phi''(\vec{x}) | \exp(-\beta H) | \phi'(\vec{x}) \rangle,
$$

or, in the path integral expression,

$$
\rho[\phi''(\vec{x}), \phi'(\vec{x})] = Z^{-1}(T) \int_{\phi(\vec{x}, t=0) = \phi'(\vec{x})}^{\phi(\vec{x}, t=\beta) = \phi''(\vec{x})} \mathscr{D}\phi \exp(-S_E)
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

 \blacktriangleright The total density matrix

$$
\begin{array}{lcl} \rho[\phi^{\prime\prime}(\vec{x}),\phi^\prime(\vec{x})] & = & Z^{-1}(\varUpsilon)\left\langle \phi^{\prime\prime}(\vec{x})|\exp(-\beta H)|\phi^\prime(\vec{x})\right\rangle \\ \\ & = & Z^{-1}(\varUpsilon)\int_{\phi(\vec{x},t=0)=\phi^\prime(\vec{x})}^{\phi(\vec{x},t=\beta)=\phi^{\prime\prime}(\vec{x})} \mathscr{D}\phi \exp\left(-\mathcal{S}_{\mathsf{E}}\right) \end{array}
$$

► $Z(T) = Tr \exp(-\beta H)$ is found by setting $\phi'(\vec{x}) = \phi''(\vec{x})$ and integrating over $\phi'(\vec{x})$.

► The reduced density matrix $\rho_A[\phi''(\vec{x}), \phi'(\vec{x})] = \text{Tr}_B \rho$ can be obtained by imposing the boundary conditions

$$
\phi(\vec{x}, t = 0) = \phi'(\vec{x}) \quad \text{and} \quad \phi(\vec{x}, t = \beta) = \phi''(\vec{x}) \quad \text{if} \quad \vec{x} \in A
$$

$$
\phi(\vec{x}, t = 0) = \phi(\vec{x}, t = \beta) \quad \text{if} \quad \vec{x} \in B
$$

 \triangleright n-th power of the reduced density matrix

$$
\rho_A^n[\phi''(\vec{x}), \phi'(\vec{x})] = \int_{x \in A} \mathcal{D}\phi_1 \cdots \phi_{n-1}
$$

\n
$$
\rho_A[\phi''(\vec{x}), \phi_1(\vec{x})] \rho_A[\phi_1(\vec{x}), \phi_2(\vec{x})] \cdots
$$

\n
$$
\times \rho_A[\phi_{n-1}(\vec{x}), \phi'(\vec{x})]
$$

 \blacktriangleright The trace of ρ_A^n is found to be

$$
\operatorname{Tr} \rho_A^n = \int_{x \in A} \mathscr{D}\phi_1 \cdots \phi_n
$$

$$
\rho_A[\phi_1(\vec{x}), \phi_2(\vec{x})] \rho_A[\phi_2(\vec{x}), \phi_3(\vec{x})] \cdots
$$

$$
\times \rho_A[\phi_n(\vec{x}), \phi_1(\vec{x})],
$$

 \blacktriangleright Tr ρ_A^n is obtained by imposing the periodic boundary condition in time with period $n\beta$ i[f](#page-27-0) $x \in A$ and with period β if $x \in B$ $x \in B$ [.](#page-28-0) — Some examples —

For $(1 + 1)$ -dimensional CFT in a finite system of the length L, [Calabrese and Cardy, 2004, Korepin, 2004]

$$
S_A(I) = \frac{c}{3} \log \left(\frac{L}{\pi a} \sin \frac{\pi I}{L} \right) + c'_1.
$$

For $(1 + 1)$ -dimensional CFT at finite temperature $T = 1/\beta$,

$$
S_A(I) = \frac{c}{3} \log \left(\frac{\beta}{\pi a} \sinh \frac{\pi I}{\beta} \right) + c_1' = \begin{cases} \frac{c}{3} \log \frac{I}{a} + c_1' & I \ll \beta, \\ \frac{\pi c}{3\beta}I + c_1' & I \gg \beta. \end{cases}
$$

In the high temperature limit, S_A reduces to the thermal entropy.

— Entanglement entropy : holographic approach —

- \blacktriangleright AdS/CFT correspondence argues that the supergravity on $(d + 2)$ -dimensional anti-de Sitter space AdS $_{d+2}$ is equivalent to a $(d + 1)$ -dimensional conformal field theory living on the boundary of AdS_{d+2} [Maldacena, 1998].
- It has been proposed that the entanglement entropy S_A in $(d + 1)$ -dimensional CFT can be computed from the 'area law' [Ryu and Takayanagi, 2006]

$$
S_A(I) = \frac{\text{area of }\gamma_A}{4G_N^{(d+2)}},
$$

where γ_A is the d-dimensional static minimal surface in AdS $_{d+2}$ with $\partial \gamma_{\cal A} = \partial {\cal A}$, and ${\cal G}_N^{(d+2)}$ $N^{(d+2)}$ is the $(d+2)$ -dimensional Newton constant (cf. Bekenstein-Hawking formula for black hole entropy)
Entries in the second second that the second se

— Holographic approach : example —

 \triangleright The gravitational theories on AdS₃ space of radius R are dual to $(1 + 1)$ -dimensional <code>CFTs</code> with the central charge $c=3R/2G_\mathsf{N}^3$

 \blacktriangleright Metric of AdS₃

$$
ds^2 = R^2(-\cosh \rho^2 dt^2 + d\rho^2 + \sinh \rho^2 d\theta^2)
$$

- The subsystem A is the region $0 \le \theta \le 2\pi l/L$.
- \triangleright γ_A is the static geodesic which connects the boundary of A traveling inside $AdS₃$.
- \blacktriangleright The geodesic distance L_{γ_A} is given by

$$
\cosh\left(\frac{L_{\gamma_A}}{R}\right) = 1 + 2\sinh^2\rho_0^2\sin^2\frac{\pi l}{L}
$$

 2990

イロト イタト イモト イモト

— Holographic approach : example —

Assuming $\exp(\rho_0) \gg 1$, the entanglement entropy is

$$
S_A(l) \simeq \frac{c}{3} \log \left[\exp(\rho_0) \sin \left(\frac{\pi l}{L} \right) \right], \qquad \exp(\rho_0) \sim L/a,
$$

which coincides with the result obtained by using the replica trick.

 \blacktriangleright In $(3 + 1)$ -dimensional $\mathcal{N} = 4$ SYM considered to be dual to AdS $_5\times$ S 5 background in type IIB string theory [Ryu and Takayanagi, 2006]

$$
\frac{1}{|\partial A|}S_A(I) = c\frac{N_c^2}{a^2} - c'\frac{N_c^2}{I^2},
$$
\n
$$
c' \simeq \begin{cases}\n0.051 \text{ AdS result} \\
\frac{(2+6)\times 0.0049}{\text{gauge + real scalar}} + \frac{4\times 0.0097}{\text{Majorana}} = 0.078 \text{ free field}\n\end{cases}
$$

— holographic approach : confining background — \triangleright Generalization of the 'area law' formula to non-conformal theories

[Klebanov, Kutasov,and Murugan, 2008]

$$
\mathcal{S}_A = \frac{1}{4\,G_N^{(10)}}\int d^8 \sigma e^{-2\phi}\sqrt{G_{\rm ind}^{(8)}}.
$$

 \triangleright nonanalytic behavior for backgrounds:

- \blacktriangleright Klebanov-Strassler
- D4-branes on a circle
- \triangleright D3-branes on a circle $((2 + 1)$ -dim. theory)
- ► Soft wall model $(e^{-z^2}$ dilaton)
- ▶ Other behavior for backgrounds:
	- Maldacena-Nunez
	- \blacktriangleright Hard wall model
	- Soft wall model (e^{-z^n})

KORKARA KERKER SAGA

