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— Entanglement entropy : introduction —

I Measures how much a given quantum state is entangled

quantum mechanically.

I A non-local quantity like the Wilson loop

as opposed to correlation functions

I We can probe the quantum properties of the ground state

for a quantum system

(quantum spin system, quantum Hall liquid,. . . ).

I Proportional to the degrees of freedom

I The entanglement entropy can be used as an order parameter

I Applications: quantum information and computing,

condensed matter physics, ...



— Entanglement entropy : in quantum field theory —

I Divide spacetime into two regions A and B

I The reduced density matrix of the ground state

ρA = TrB ρ = TrB |0〉〈0|

B c A
t

x l

I ρA can be regarded as the density matrix for an observer who can only

access to the subsystem A.

I The entanglement entropy as the von Neumann entropy

SA(l) = −TrA(ρA ln ρA)

I How to calculate the entanglement entropy?

1. replica method [Carabrese and Cardy, 2004]

2. holography [Ryu and Takayanagi, 2006]



— Replica method —

I The entanglement entropy (TrA ρA = 1)

SA(l) = −TrA(ρA ln ρA)

= − lim
n→1

∂

∂n
ln TrA ρ

n
A

I Entanglement entropy can be expressed as

SA(l) = − lim
n→1

∂

∂n
ln

(
Z (l , n)

Zn

)
= − lim

n→1

∂

∂n
F [l , n] + F

where Z (l , n) is the partition function

on the n-sheeted Riemann surface.

B

AB
Z(l,n) =

Z = A

nβ

β



— Some examples —

I For (1 + 1)-dimensional model at the critical point (CFT),

[Holzhey, Larsen and Wilczek, 1994, Calabrese and Cardy, 2004]

SA(l) =
c

3
log

l

a
+ c ′1,

where c is the central charge of CFT, a the UV cutoff.

I Not in the critical regime,

SA(l) −→
l�ξ

c

3
log

ξ

a
,

where ξ is the correlation length of the system.

AB ξ

l

I SA is the amount of quantum correlations between subregions.

I SA can serve as an order parameter for a quantum phase transition.



— Entanglement entropy : holographic approach —

I In (3 + 1)-dimensional N = 4 SYM [Ryu and Takayanagi, 2006]

1

|∂A|
∂SA(l)

∂l
= 2N2

c

c

l3
, c '

0.051 AdS result

0.078 free field

I nonanalytic behavior for confining backgrounds:

[Klebanov, Kutasov and Murugan, 2008]

I Klebanov-Strassler

I D4-branes on a circle

I D3-branes on a circle ((2 + 1)-dim. theory)

I Soft wall model (e−z2

dilaton)

I Other behavior for backgrounds:

I Maldacena-Nunez

I Hard wall model

I Soft wall model (e−zn

, n < 2)

l
∂S

 / 
∂l

0

~ N
c

2
/ l

3

~ O(1)
lc

I Entanglement entropy transition at lc ≈ m−1
glueball from O(N2

c ) solution

(gluons) at small l to O(1) solution (glueballs) at large l



— Entanglement entropy : in lattice gauge theory —

I (Exactly solvable) (1 + 1)-dimensional SU(Nc) lattice gauge theory

analytic behavior (independent of l) [Velytsky, 2008]

I (3 + 1)-dimensional SU(2) lattice gauge theory treated within

Migdal-Kadanoff approximation

⇒ nonanalytic change at lcTc ∈ (1.56, 1.66) [Velytsky, 2008]

I SU(2) quenched simulation [Buividovich and Polikarpov, 2008]
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— Lattice QCD simulations —

I SU(3) quenched lattice simulations

5000 sweeps for thermalization, measurement every 100 sweeps,

3000 ∼ 10000 confs.

I Pseudo heat-bath MC update: Wilson plaquette action

SW = β
∑
p

(
1− 1

2Nc
Tr(Up + U†p)

)
I Mesure the derivative of SA(l) with respect to l

∂SA(l)

dl
=

∂

∂l

[
− lim

n→1

∂

∂n
ln

(
Z (l , n,T )

Zn(T )

)]
= lim

n→1

∂

∂l

∂

∂n
F [l , n,T ]



— Lattice QCD simulations —

I Estimate the derivative by

∂SA(l)

dl
= lim

n→1

∂

∂l

∂

∂n
F [A, n]

→ ∂

∂l
lim
n→1

(F [l , n + 1]− F [l , n])

→ F [l + a, 2]− F [l , 2]

a
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— Lattice QCD simulations —

I Differneces of free energies [Endrodi et al., PoS LAT2007]

Z (α) =

∫
Dφ exp (−(1− α)S1[φ]− αS2[φ])

F2 − F1 = −
∫ 1

0
dα

∂

∂α
ln Z (α) =

∫ 1

0
dα 〈S2[φ]− S1[φ]〉α

��
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� �
S2 � ������	��S1



— Action difference —

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
α

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000
<

 S
2 -

 S
1 >

16
4
, β=5.7, l = a ~ 0.17[fm]

• Contribution from α > 0.5 and α < 0.5 almost cancel.



— Results: derivative of SA(l) wrt l —
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c /l

3 for N = 4 SYM in(3+1)-dim.



— Results: derivative of SA(l) wrt l —
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— Results: derivative of SA(l) wrt l —
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• No clear discontinuity has been observed.



— Entanglement entropy at finite temperature —

I Entanglement entropy

SA = −TrA(ρA ln ρA), ρA = TrB(ρtotal),

I A thermal state is a mixed state,

ρAB =
∑
n

exp

(
−En

T

)
|n〉〈n|

I For (1 + 1)-dimensional CFT at finite temperature T = 1/β,

SA(l) =
c

3
log

(
β

πa
sinh

πl

β

)
+ c ′1 =


c

3
log

l

a
+ c ′1 l � β,

πc

3β
l + c ′1 l � β.

I At sufficiently large l (or in the high temperature limit),

SA reduces to the thermal entropy.



— Results: dSA/dl at finite temperatures (below Tc) —
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— Results: dSA/dl at finite temperatures (above Tc) —
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— Results: dSA/dl at finite temperatures —

Figures taken from Boyd et al., NPB469, 419 (1996)

Rough estimates : s ∼

(4.8 + 1.0)× 1.443 ∼ 17.3 ↔ 14.1(8)

(5.3 + 1.5)× 2.023 ∼ 56.0 ↔ 62.3(25)



— Summary and outlook —

I We discussed the entanglement entropy in SU(3) pure YM theory.

I Entanglement entropy measures amount of quantum correlations

between subregions

I ∂S/∂l behaves as 1/l3 at small l , and vanishes at large l .

I Discontinuity has not been observed at zero temperature.

I In the deconfinement phase, entanglement entropy approaches to a

finite value at large l , comparable to the thermal entropy.



— Summary and outlook —

I We have to examine

• discretization errors (with an improved gauge action)

• systematic errors (n > 2 cut simulations)

I Interesting to calculate the entanglement entropy in

• compact QED (confinement phase and Coulomb phase)

• full QCD



— Entanglement entropy : definition —

I Divide a system into two subsystems A and B

I The density matrix on A is defined by

ρA = TrB(ρAB),

i.e., by tracing over the states of the subsystem B.

I ρA can be regarded as the density matrix for an

observer who can only access to the subsystem A.

I Entanglement entropy as the von Neumann entropy

SA = −TrA(ρA ln ρA)

AB



— Entanglement entropy : a simple example —

I Two spin 1/2 particles
AB

I For a separable (product) state, e.g.,

|ψ〉 =
1√
2

(
|↑〉A + |↓〉A

)
⊗ |↑〉B =⇒ SA = 0

I For an entangled state, e.g.,

|ψ〉 =
1√
2

(
|↑〉A ⊗ |↓〉B + |↓〉A ⊗ |↑〉B

)
=⇒ SA = ln 2



— Entanglement entropy : a simple example —

I Consider two spin 1/2 particles (|a|2 + |b|2 + |c |2 + |d |2 = 1)

|ψ〉 = a

(
1

0

)
A

(
1

0

)
B

+ b

(
1

0

)
A

(
0

1

)
B

+ c

(
0

1

)
A

(
1

0

)
B

+ d

(
0

1

)
A

(
0

1

)
B

I The density matrix ρAB = |ψ〉〈ψ| is given by

ρAB = aa∗

(
1 0

0 0

)
A

(
1 0

0 0

)
B

+ ab∗

(
1 0

0 0

)
A

(
0 1

0 0

)
B

+ · · ·

I The reduced density matrix ρA = is

ρA = TrB(ρAB) =

(
aa∗ + bb∗ ac∗ + bd∗

ca∗ + db∗ cc∗ + dd∗

)



— Entanglement entropy : a simple example —

I The eigenvalues of the density matrix ρA are

λ± =
1

2

(
1±

√
1− 4|ad − bc|2

)
I The entanglement entropy is

SA = −TrA(ρA ln ρA) = −
∑

i

λi lnλi

I For a separable (product) state, e.g.,

|ψ〉 =
1√
2

(
|↑〉A + |↓〉A

)
⊗ |↑〉B =⇒ SA = 0

I For an entangled state, e.g.,

|ψ〉 =
1√
2

(
|↑〉A ⊗ |↓〉B + |↓〉A ⊗ |↑〉B

)
=⇒ SA = ln 2



— Analyticity of Tr ρA —

See [Calabrese and Cardy, quant-ph/0505193]

Tr ρn
A =

Z (l , n,T )

Zn(T )
,

Tr ρn
A =

∑
i

λi , 0 ≤ λi < 1

I Tr ρn
A is absolutely convergent and analytic for all Re n > 1.

I The derivative with respect to n exists and analytic in the region.

I If ρA = −
∑

i λi lnλi is finite, then the limit as n→ 1+ of the first

derivative coverges to ρA.

I Z (l , n,T )/Zn(T ) has a unique analytic continuation to Re n > 1.



— Replica method —

I The entanglement entropy

SA(l) = −TrA(ρA ln ρA)

can be written as (TrA ρA = 1)

SA(l) = − lim
n→1

∂

∂n
ln TrA ρ

n
A

I The total density matrix ρ is (Z (T ) = Tr exp(−βH))

ρ[φ′′(~x), φ′(~x)] = Z−1(T )
〈
φ′′(~x)| exp(−βH)|φ′(~x)

〉
,

or, in the path integral expression,

ρ[φ′′(~x), φ′(~x)] = Z−1(T )

∫ φ(~x ,t=β)=φ′′(~x)

φ(~x ,t=0)=φ′(~x)
Dφ exp (−SE )



— Replica method —

I The total density matrix

ρ[φ′′(~x), φ′(~x)] = Z−1(T )
〈
φ′′(~x)| exp(−βH)|φ′(~x)

〉
= Z−1(T )

∫ φ(~x ,t=β)=φ′′(~x)

φ(~x ,t=0)=φ′(~x)
Dφ exp (−SE )

I Z (T ) = Tr exp(−βH) is found by setting φ′(~x) = φ′′(~x)

and integrating over φ′(~x).

I The reduced density matrix ρA[φ′′(~x), φ′(~x)] = TrB ρ can be obtained

by imposing the boundary conditions

φ(~x , t = 0) = φ′(~x) and φ(~x , t = β) = φ′′(~x) if ~x ∈ A

φ(~x , t = 0) = φ(~x , t = β) if ~x ∈ B



— Replica method —

I n-th power of the reduced density matrix

ρn
A[φ′′(~x), φ′(~x)] =

∫
x∈A Dφ1 · · ·φn−1

ρA[φ′′(~x), φ1(~x)]ρA[φ1(~x), φ2(~x)] · · ·

×ρA[φn−1(~x), φ′(~x)]

I The trace of ρn
A is found to be

Tr ρn
A =

∫
x∈A Dφ1 · · ·φn

ρA[φ1(~x), φ2(~x)]ρA[φ2(~x), φ3(~x)] · · ·

×ρA[φn(~x), φ1(~x)],

AB c

β

I Tr ρn
A is obtained by imposing the periodic boundary condition in time

with period nβ if x ∈ A and with period β if x ∈ B.



— Some examples —

I For (1 + 1)-dimensional CFT in a finite system of the length L,

[Calabrese and Cardy, 2004, Korepin, 2004]

SA(l) =
c

3
log

(
L

πa
sin

πl

L

)
+ c ′1.

I For (1 + 1)-dimensional CFT at finite temperature T = 1/β,

SA(l) =
c

3
log

(
β

πa
sinh

πl

β

)
+ c ′1 =


c

3
log

l

a
+ c ′1 l � β,

πc

3β
l + c ′1 l � β.

I In the high temperature limit, SA reduces to the thermal entropy.



— Entanglement entropy : holographic approach —

I AdS/CFT correspondence argues that the supergravity on

(d + 2)-dimensional anti-de Sitter space AdSd+2 is equivalent to

a (d + 1)-dimensional conformal field theory living on the boundary of

AdSd+2 [Maldacena, 1998].

I It has been proposed that the entanglement entropy SA in

(d + 1)-dimensional CFT can be computed from the ’area law’

[Ryu and Takayanagi, 2006]

SA(l) =
area of γA

4G
(d+2)
N

,

where γA is the d-dimensional static minimal surface in AdSd+2

with ∂γA = ∂A, and G
(d+2)
N is the (d + 2)-dimensional Newton

constant (cf. Bekenstein-Hawking formula for black hole entropy)



— Holographic approach : example —

I The gravitational theories on AdS3 space of

radius R are dual to (1 + 1)-dimensional

CFTs with the central charge c = 3R/2G 3
N

I Metric of AdS3

ds2 = R2(− cosh ρ2dt2 + dρ2 + sinh ρ2dθ2)

I The subsystem A is the region 0 ≤ θ ≤ 2πl/L.

I γA is the static geodesic which connects the

boundary of A traveling inside AdS3.

I The geodesic distance LγA
is given by

cosh

(
LγA

R

)
= 1 + 2 sinh2 ρ2

0 sin2 πl

L

t ρ

A

B θ

Aγ



— Holographic approach : example —

I Assuming exp(ρ0)� 1, the entanglement entropy is

SA(l) ' c

3
log

[
exp(ρ0) sin

(
πl

L

)]
, exp(ρ0) ∼ L/a,

which coincides with the result obtained by using the replica trick.

I In (3 + 1)-dimensional N = 4 SYM considered to be dual to AdS5×S5

background in type IIB string theory [Ryu and Takayanagi, 2006]

1

|∂A|
SA(l) = c

N2
c

a2
− c ′

N2
c

l2
,

c ′ '


0.051 AdS result

(2 + 6)× 0.0049︸ ︷︷ ︸
gauge + real scalar

+ 4× 0.0097︸ ︷︷ ︸
Majorana

= 0.078 free field



— holographic approach : confining background —
I Generalization of the ’area law’ formula to non-conformal theories

[Klebanov, Kutasov,and Murugan, 2008]

SA =
1

4G
(10)
N

∫
d8σe−2φ

√
G

(8)
ind .

I nonanalytic behavior for backgrounds:

I Klebanov-Strassler

I D4-branes on a circle

I D3-branes on a circle ((2 + 1)-dim. theory)

I Soft wall model (e−z2

dilaton)

I Other behavior for backgrounds:

I Maldacena-Nunez

I Hard wall model

I Soft wall model (e−zn

, n < 2)

l

∂S
 / 

∂l

0

~ N
c

2
/ l

3

~ O(1)
lc

I Entanglement entropy transition at lc ≈ m−1
glueball from O(N2

c ) solution

(gluons) at small l to O(1) solution (glueballs) at large l



— Results: entropic C -function —
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