Non-perturbative running of the coupling from four-flavour lattice QCD with staggered quarks.

Paula Pérez Rubio perez@maths.tcd.ie

Trinity College Dublin Universidad Autónoma de Madrid

Villasimius, 15th June, 2010

Paula Pérez Rubio (TCD, UAM)

Running of the renormalised coupling in LQCD

Villasimius, 15th June, 2010 1/13

3

Outline

1 Introduction

- Schrödinger functional and definition of a coupling constant Staggered fermions on the SF set up Symanzik improvement
- 3 Finite size techniques
- 4 Numerical details
- **6** Results Extrapolation of $\Sigma(u, a/L)$ $\sigma(u)$ vs u and Λ - parameter
- 6 Conclusions and outlook

< ∃ >

Introduction

- QCD is believed to describe the strong interactions at all scales.
- Fix the the free parameters at a scale \Rightarrow make predictions

High energy QCDLow energy QCDAsymptotic freedom \Leftrightarrow Confinement?Perturbation theory \Downarrow \Downarrow \Downarrow \Downarrow \Downarrow

A way of connecting these two regimes is thus desired.

- REQUISITE: Non-perturbative techniques ⇒ LQCD
- PROBLEM: Large scale diferences involved,

$$a^{-1} >> \mu_{\mathrm{pert}} >> \mu_{\mathrm{had}} >> L^{-1}$$

- POSSIBLE SOLUTION: Finite size techniques [Lüscher et al. '91],
 - 1. **Finite volume**: the volume plays the role of a scale, $L \sim 1/\mu$.
 - 2. **Define a coupling**: $\bar{g}(L)$ (runs with the scale).
 - 3. Low energies: match with hadronic quantities
 - 4. Evolution: discretised RGE + simulations at different volumes.
 - 5. **High energies**: match with a perturbative scheme.

3

コト イポト イヨト イヨト

Schrödinger Functional and running coupling

- Non perturbative definition \bar{g} needed with: easy perturbative expansion, easy to calculate numerically, small discretisation errors.
- Schrödinger Functional, (SF): Z[C, C'] = ∫ D[A]e^{-S[A]}.
- Boundary conditions:

$$A_k(x)|_{x_0=0} = C_k, \quad A_k(x)|_{x_0=T} = C'_k.$$

[Narayanan et al. '92]

- Effective action, with *B* the background field: $\Gamma[B] = -\ln \mathcal{Z}[C, C'].$
- Consider a one parameter family, B(η), C, C' ~ L⁻¹, T = L. One scale.
- Weak coupling expansion:

$$\Gamma[B] \xrightarrow{g_0 \to 0} \frac{1}{g_0^2} \Gamma_0[B] + \Gamma_1[B] + g_0^2 \Gamma_2[B] + \dots$$

(LxLxL box with periodic b.c.)

Staggered fermions on the SF set up

Figure: SF with staggered fermions

- Technical problem with staggered fermions (Miyazaki and Kikukawa '94 & Heller '97): T/a odd and L/a even.
- Modified conventions: take the continuum limit at T' = L. T' = T + sa is the extent of the "effective" lattice (s = ±1).
- This modifies the O(a) effects in the pure gauge theory even at tree level.

→ + Ξ →

< 47 ▶

Staggered fermions on the SF set up

Figure: SF with staggered fermions

- Technical problem with staggered fermions (Miyazaki and Kikukawa '94 & Heller '97): T/a odd and L/a even.
- Modified conventions: take the continuum limit at T' = L. T' = T + sa is the extent of the "effective" lattice (s = ±1).
- This modifies the O(a) effects in the pure gauge theory even at tree level.

(B) (A) (B) (A)

Symanzik improvement

In the SF framework O(a) effects are of two types,

BULK:

- **Pure gauge**: No O(*a*) effects.
- **Staggered fermions**: No O(*a*) effects. SUBTLE ⇒Improved staggered fermions (time direction) in space + chiral twist (spatial directions).

BOUNDARIES:

• Pure gauge:
$$c_t \operatorname{tr} \{ F_{0k} F_{0k} \}$$
, $c_t = c_t^{(0)} + g_0^2 (c_t^{(1,0)} + N_f c_t^{(1,1)}) + \operatorname{O}(g_0 4)$,

$$c_t^{(0)} = rac{2}{2+s}, \hspace{0.5cm} c_t^{(1,0)_1} = 0.0274(2), \hspace{0.5cm} c_t^{(1,1)_1} = 0.0077856(4), \ c_t^{(1,1)_{-1}} = -0.4636(6), \hspace{0.5cm} c_t^{(1,1)_{-1}} = -0.0266(8).$$

• Staggered fermions: $(d_{1s}-1)[\hat{\mathcal{O}}_1+\hat{\mathcal{O}}'_1]$. If $P_{\pm}=\frac{1}{2}(1\pm\gamma_0)$,

$$\hat{\mathcal{O}}_1 = \bar{\psi}(0, \mathbf{y}) P_+ \gamma_k \mathcal{D}_k \psi(0, \mathbf{y}), \quad d_{1s}^{(0)} = 1 + \frac{s}{4}.$$

(ロ) (型) (E) (E) (E) (O)

Finite size techniques

• The step scaling function is defined in the continuum,

 $\sigma(u) = \bar{g}^2(2L)|_{u=\bar{g}^2(L)}.$

 On the lattice, it can be obtained from a sequence of pairs of lattices with sizes L/a and 2L/a,

$$\sigma(u) = \lim_{a\to 0} \Sigma(u, a/L).$$

• Repeat the procedure for a range of u values in $[\bar{g}^2(L_{\min}), \bar{g}^2(L_{\max})]$,

$$u_0 = \bar{g}^2(L_{\min})$$
 $u_k = \sigma(u_{k-1}) = \bar{g}^2(2^k L_{\min}),$ $k = 1, 2, ...$

- After 7,8 steps, scale differences of O(100) are bridged.
- LOW ENERGIES: Connection with physical units: Compute F_πL_{max}
- HIGH ENERGIES: Connection with PT, $ar{g}_{\overline{ ext{MS}}}^2 = ar{g}^2 \left(1 + C_g^{(1)} ar{g}^2 + \dots
 ight)$.

Numerical details

- Algorithm used: HMC. Customised version of the MILC code, [MILC Collab. '02] implementing the O(a) improvement.
- Lattices with L/a = 4, 6, 8, 12, 16, and $s = \pm 1$.
- Statistics ranging \sim 60000 160000.
- Data analysis: Uwerr.m, [U. Wolff, '04].
- No tuning made beforehand. Interpolation of the data. [T. Appelquist et al, '09].

・ロト ・ 帰 ト ・ ヨ ト ・ ヨ ・ う り へ つ

Results

Extrapolation of $\Sigma(u, a/L)$

Figure: Continuum limit extrapolation of the lattice step scaling function

$\sigma(u)$ vs u and Λ - parameter

Figure: Evolution of $\sigma(u)/u$ vs u

< 47 ▶

11/13

Conclusions and outlook

- Running of the renormalised coupling constant for QCD with 4 flavours of staggered quarks has been computed.
- Requisites:
 - 1. Formulation of SF with staggered quarks.
 - 2. Implementation of the O(a) improvement.
 - 3. Simulations and data analysis.

OUTLOOK

- Connection with physical units still has to be performed.
- Comparative analysis with the work just presented as a test of universality, [R.Sommer, F.Tekin, U.Wolff, 10'].
- \bar{g} under control \Rightarrow Computation of other observables is possible.

ロト 不得 ト イヨト イヨト

Conclusions and outlook

Extrapolation of $\Sigma(u, a/L)$, (II)

Figure: Continuum limit extrapolation of the lattice step scaling function

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A