Continuum Thermodynamics of the $SU(N_c)$ Gauge Theory

Saumen Datta and Sourendu Gupta

Tata Institute of Fundamental Research, Mumbai

June 17, 2010

Saumen Datta and Sourendu Gupta Continuum Thermodynamics of the $SU(N_c)$ Gauge Theory

イロン イヨン イヨン イヨン

Deconfinement in $SU(N_c)$

• $SU(N_c)$ gauge theory simplifies in the limit of large N_c

't Hooft '73

 $\lambda=g^2N_c$ fixed as $N_c\to\infty$: subclass of diagrams important Qualitative understanding of many features of hadron physics

Deconfinement transition: some features of the 3-color theory can be understood from the large N_c theory

Svetitsky & Yaffe; Pisarski; McLerran & Pisarski; ...

Deconfinement transition in SU(4)

Gavai; Ohta & Wingate; '01-'02

- Lucini, Teper, Wenger '02-'07 Lattice study of deconfinement transition for $N_c = 4,6,8$
- We studied deconfinement in SU(4)(6) for N_τ = 6-12 (10) scaling requires (small) correction to 2-loop β fn in terms of *renormalized coupling*

S. Datta & S. Gupta, Lattice 2009, PRD 80 ('09) 114504

Thermodynamics of $SU(N_c)$ Gluon Plasma

► Thermodynamics near T_c (< 2 T_c) for SU(4-8) (N_{τ} = 5)

Bringoltz & Teper, PL B 628(2005) 113.

- Bulk thermodynamic quantities of the gluon plasma
 - SU(4-8), coarse ($N_t = 5$) lattices

M. Panero, Lattice 2009, PRL 103 ('09) 232001

• $N_t = 6$ and 8 lattices, SU(4-6)

S. Datta & S. Gupta, QM 2009, Lattice 2009

- New Results:
 - Detailed study of latent heat
 - Non-perturbative β fn for thermodynamics
 - Equation of state: large volumes to go to $\sim 4T_c$ with $N_t = 8$
- Approach to conformality in $SU(N_c)$ plasma
- Investigate 't Hooft (scaling with λ) vs. strong N_c scaling.

S. Datta and S. Gupta, arXiv:1006.0938

- 本部 とくき とくき とうき

Formalism

$$\frac{(\epsilon - 3p)}{T^4} = 6N_{\tau}^4 a \frac{\partial \beta}{\partial a} \left(P(T) - P(T = 0) \right)$$
$$\boxed{a \frac{\partial \beta}{\partial a} = -\frac{\partial \beta}{\partial g_R^2(k/a)} \cdot 2g_R \beta(g_R)}$$

where g_R is calculated in Lepage-Mckenzie V-scheme, and $\beta(g_R)$ includes a correction to β_{2-loop} to get scaling of T_c . Datta & Gupta, PR D 80 ('09) 114504.

Pressure calculated using the "integral method"

Boyd et al., Nucl.Phys. B 469('96) 419

$$\frac{p(T)}{T^4} - \frac{p(T_0)}{T_0^4} = 6N_\tau^4 \int_{\beta_0}^{\beta} d\beta \ (P(\beta, T) - P(\beta, T = 0))$$

For free gas, $\frac{\epsilon_{SB}}{T^4} = 3\frac{p_{SB}}{T^4} = (N_c^2 - 1)\frac{\pi^2}{15}R(N_\tau)$ Here $R(N_\tau)$ discretization error $= 1 + \frac{8}{21}(\frac{\pi}{N_t})^2 + \dots$

Engels et al., Nucl-Phys. B: 205('82) 545 Soco

β function

→ 同→ → 注→

-

イロト イポト イヨト イヨト

3

イロト イポト イヨト イヨト

3

eta function and $(\epsilon - 3p)/T^4$

Very little cutoff dependence, except probably very close to T_c We take the $N_{\tau} = 8$ result as the continuum result.

Latent Heat: Method

 L_h/T_c^4 obtained from the discontinuity of $(\epsilon - 3p)/T^4$ at T_c •Put |L| cut to identify confined and deconfined phase at T_c

Latent Heat: Method

 L_h/T_c^4 obtained from the discontinuity of $(\epsilon-3p)/T^4$ at T_c

•Put |L| cut to identify confined and deconfined phase at T_c

• Procedure stable in the metastability regime

Saumen Datta and Sourendu Gupta Continuum Thermodynamics of the SU(N_c) Gauge Theory

Latent Heat: Results

• Results from $N_{\tau} = 8$ lattices:

N _c	β	L_h/T_c^4	$L_h/\Delta_{\rm max}$
3	6.0609	1.67(4)(4)	0.68(3)
4	11.08	4.32(6)(6)	0.82(2)
6	25.46	11.93(34)(5)	0.90(3)

 In excellent agreement with the N_t = 8 results of Teper et al. (at smaller volume, lower statistics)

Lucini, Teper, Wenger, JHEP02, 033 ('05)

A larger value obtained for SU(4) by Gavai.
Uses bare coupling.

R. Gavai, Nucl. Phys. B 633, 127 ('02)

$$\frac{L_h}{T_A T_c^4} = 0.388(3) - \frac{1.61(4)}{N_c^2}$$

(statistical error only) correction considerable at $N_c = 3$

- Good scaling with $T_A = N_c^2 1$ except very close to T_c
- Peak moves towards T_c with increasing N_c, requires better accuracy to quantify the movement.
- Substantial conformal symmetry breaking at $2T_c$: $\Delta^{1/4} \sim T_c$

• $e - 3p \sim T^2$ observed for SU(3) over large T range.

Meisinger, Miller, Ogilvie '02; Pisarski '07

 Similar behavior observed for N_c = 4,6, subleading term also contribute at SU(6)

Bulk Thermodynamic Quantities

3

< (10 b)

물 🕨 🔺 물

æ

Approach to conformality

Closer to weak coupling theory (Laine & Schroeder, PR D 73('06)) than to conformal theory.

No evidence of a strongly coupled, near-conformal phase.

Entropy and 't Hooft scaling

Strong N_c scaling is better than scaling with the 't Hooft coupling, which holds only at the higher temperatures. The line is the result for $\mathcal{N} = 4$ SYM (Klebanov et al. '02)

Summary

- The thermodynamics of $SU(N_c)$ gauge theory is studied for $N_c \leq 6$, with emphasis on thermodynamic and continuum limit.
- The latent heat of the deconfinement transition is obtained. The transition for 3-color theory is found to be much weaker than that in $N_c > 3$.
- $(\epsilon 3p)/T^4$ and other bulk thermodynamic quantities scale nicely with $T_A = N_c^2 1$, except very close to T_c , indicating that the correction to the leading N_c behavior small.
- ► The scaling of thermal quantities with N_c is much better than the scaling with the 't Hooft coupling $g^2(2\pi T)N_c$.
- ► The high temperature theory stays closer to the weak coupling prediction than conformality: no window for a strongly coupled, near-conformal phase in the SU(N_c) gluon plasma.

Cutoff dependence for $N_t = 5-6$

SU(3) data from Boyd et al. ('96) $N_t = 5$ results from Marco Panero (Thanks!)

Cutoff dependence for $N_t = 5-6$

SU(3) data from Boyd et al. ('96) $N_t = 5$ results from Marco Panero (Thanks!)

Approach to conformality: Cutoff effects

Green points are $N_t = 5$ results from Marco Panero The others are $N_t = 8$ Red lines are weak coupling (Laine et al.) SU(3) data from Boyd et al. ('96) Red points in SU(3) use the beta function in Boyd et al.

Approach to conformality: Cutoff effects

Green points are $N_t = 5$ results from Marco Panero The others are $N_t = 8$ Red lines are weak coupling (Laine et al.) SU(3) data from Boyd et al. ('96) Red points in SU(3) use the beta function in Boyd et al.