

University of Wuppertal, Forschungszentrum Juelich, Eotvos University Budapest

new results of the Wuppertal-Budapest group arXiv:1005.3508  $(N_t=16, \text{ about scaling and lattice artefacts})$ 

Lattice 2010 Conference

SFB TR55

| Discrepancy: 2006 literature | a <sup>2</sup> scaling | New results: Wuppertal-Budapest | Summary |
|------------------------------|------------------------|---------------------------------|---------|
|                              |                        |                                 |         |
| Outline                      |                        |                                 |         |





3 New results: Wuppertal-Budapest



-

# Literature: discrepancies between $T_c$

Bielefeld-Brookhaven-Riken-Columbia Coll. (+MILC='hotQCD'):

M. Cheng et.al, Phys. Rev. D74 (2006) 054507

 $T_c$  from  $\chi_{\bar{\psi}\psi}$  and Polyakov loop, from both quantities:

 $T_c = 192(7)(4) \text{ MeV}$ 

Wuppertal-Budapest group (WB):

Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B. 643 (2006) 46

chiral susceptibility: Polyakov and strange susceptibility:  $T_c = 151(3)(3) \text{ MeV}$  $T_c = 175(2)(4) \text{ MeV}$ 

'chiral  $T_c$ ':  $\approx$ 40 MeV; 'confinement  $T_c$ ':  $\approx$ 15 MeV difference

both groups give continuum extrapolated results with physical  $m_\pi$ 



Summary

## Literature: discrepancies between T dependencies

Reason: shoulders, inflection points are difficult to define? Answer: no, the whole temperature dependence is shifted



for chiral quantities  ${\approx}35$  MeV; for confinement  ${\approx}15$  MeV this discrepancy would appear in all quantities (eos, fluctuations)

### Examples for improvements, consequences

how fast can we reach the continuum pressure at  $T=\infty$ ?



p4 action is essentially designed for this quantity  $T \gg T_c$ 

asqtad designed mostly for T=0 physics (but good at high T, too)

stout-smeared one-link converges slower but in the  $a^2$  scaling regime (e.g. extrapolation from  $N_t$ =8,10 provides a result within about 1%)

## Chiral symmetry breaking and pions

transition temperature for remnant of the chiral transition: balance between the chirally broken and chirally symmetric sectors chiral symmetry breaking: 3 pions are the pseudo-Goldstone bosons

staggered QCD: 1  $(\frac{3}{16})$  pseudo-Goldstone instead of 3 (taste violation) staggered lattice artefact  $\Rightarrow$  disappears in the continuum limit WB: stout-smeared improvement is designed to reduce this artefact



**Z.** Fodor The finite temperature QCD transition (is there still any  $T_c$  my

# Scaling for the pion splitting



scaling regime is reached if  $a^2$  scaling is observed asymptotic scaling starts only for  $N_t \gtrsim 8$  (a $\leq 0.15$  fm): two messages a.  $N_t=8,10$  extrapolation gives 'p' on the  $\approx 1\%$  level: good balance b. stout-smeared improvement is designed to reduce this artefact most other actions need even smaller 'a' to reach scaling

Summary

## Wuppertal-Budapest 2010 results arXiv:1005.3508

both T=0 and T>0 with physical quark masses:  $m_s/m_{ud} \approx 28$ 2006 with  $N_t$ =6,8,10  $\implies$  2008/09 with  $N_t$ =12  $\implies$  2010 with  $N_t$ =16

illustration: progress in pion splitting



## strange quark number susceptibility and Polyakov-loop

strange susceptibility:  $\chi_2^s = (T/V) \cdot \partial^2 \ln Z / \partial \mu_s^2$ 

Polyakov-loop renormalization procedure: Aoki, Fodor, Katz, Szabo: PLB643 46 (2006)

continuum behaviour can be given for both observables



## renormalized chiral condensate

$$\langle \bar{\psi}\psi\rangle_{\mathsf{R}} = -\left[\langle \bar{\psi}\psi\rangle_{\mathsf{I},\mathsf{T}} - \langle \bar{\psi}\psi\rangle_{\mathsf{I},\mathsf{0}}\right]\frac{m_{\mathsf{I}}}{X^{4}}$$

#### X can be chosen as $m_{\pi}$

$$\Delta_{l,s} = \frac{\langle \bar{\psi}\psi \rangle_{l,T} - \frac{m_l}{m_s} \langle \bar{\psi}\psi \rangle_{s,T}}{\langle \bar{\psi}\psi \rangle_{l,0} - \frac{m_l}{m_s} \langle \bar{\psi}\psi \rangle_{s,0}}$$

 $\Delta_{I,s}$  (strange subtraction)



Z. Fodor

The finite temperature QCD transition (is there still any  $T_c$  my

## T<sub>c</sub> summary of the Wuppertal-Budapest group

#### list of pseudocritical temperatures (various observables)

|       | $\chi_{ar\psi\psi}/T^4$ | $\Delta_{l,s}$ | $\langle \bar{\psi}\psi \rangle_{R}$ | $\chi^{s}_{ m 2}/T^{ m 2}$ | $\epsilon/T^4$ | ( <i>ϵ</i> -3p)/T <sup>4</sup> |
|-------|-------------------------|----------------|--------------------------------------|----------------------------|----------------|--------------------------------|
| WB'10 | 147(2)(3)               | 157(3)(3)      | 155(3)(3)                            | 165(5)(3)                  | 157(4)(3)      | 154(4)(3)                      |
| WB'09 | 146(2)(3)               | 155(2)(3)      | -                                    | 169(3)(3)                  | -              | -                              |
| WB'06 | 151(3)(3)               | -              | -                                    | 175(2)(4)                  | -              | -                              |

all numbers (in a given coloumn) are in complete agreement different variables give different pseudocritical  $T_c$ -s: 147–165 MeV reason: the transition is a broad one with 30-40 MeV broadness

3% shift to lower values between 2006 and 2009 reason: 3% experimental change in  $f_K$  (no change in lattice results)

### compare with the hadron resonance gas model: HRG



Wuppertal-Budapest: test of HRG (agrees with the continuum result) P. Huovinen, P. Petreczky, arXiv:1005.0324 use heavier than physical hadrons in HRG hotQCD: agreement only with the distorted spectrum (our splittings and hadron spectrum gives minimal change: EoS) though their results are gradually getting closer to ours

### temperature dependence of the chiral condensate



Wuppertal-Budapest: good agreement with the physical HRG

Borsanyi, Fodor, Hoelbling, Katz, Krieg, Ratti, Szabo, arXiv:1005.3508

hotQCD: agreement only with the distorted spectrum though their results are gradually getting closer to ours

### progress in T dependence of the chiral condensate

Wuppertal-Budapest: physical quark masses ( $m_s/m_{ud} \approx 28$ ) gauge configs:  $N_t$ =8,10 in 2006  $\Rightarrow N_t$ =12 in 2009  $\Rightarrow N_t$ =16 in 2010

hotQCD 2009: realistic quark masses  $(m_s/m_{ud} = 10)$ hotQCD 2010 preliminary: physical quark masses  $(m_s/m_{ud} = 20)$ 



Summary

## Illustration: lattice artefacts due to pion splitting

we have seen: our action (WB) has less unphysical pion splitting than the asqtad (MILC) and far less than the p4 (Bielefeld) action

in the continuum limit: no problem; at  $a \neq 0$  it mimics larger  $M_{\pi}$  "reproduce" the result of hotQCD with larger  $M_{\pi}$  (asqtad is better)



 $m_{\pi} \approx 220 \text{ MeV}$  (hotQCD) "corresponds" to  $M_{\pi} \approx 410 \text{ MeV}$  (WB) asqtad (MILC) needs finer p4 (Bielefeld) needs much finer lattices in order to handle physical quark masses

Z. Fodor

The finite temperature QCD transition (is there still any  $T_c$  my

- the T>0 QCD transition is an analytic cross-over
- new (2010) results for the transition and its scale
- three improvements since 2006 (in 2009 and 2010)
   a. at T=0 all simulations are done with physical quark masses
   b. to verify that the results are independent of the scale setting
   we use 5 experimentally well-known quantites: *f<sub>K</sub>*, *f<sub>π</sub>*, *m<sub>K\*</sub>*, *m<sub>Ω</sub>*, *m<sub>Φ</sub>* c. smaller and smaller lattice spacings: *N<sub>t</sub>*=16
- all our findings are in complete agreement with our 2006 results
- Particle Data Group reduced the experimental value of  $f_{K}$ : 3%
- discrepancy between Wuppertal-Budapest & 'hotQCD' results 'hotQCD' results are approaching our findings