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Outline

1. Nf=12
- detailed chiral analysis with estimates of serious limitations

2. Nf=2 sextet chiral symmetry breaking
- first steps toward complete chiral analysis (preliminary)
- this model can be settled!



Talk is based on published results last year: 

1.  Topology and higher dimensional representations.
          Published in JHEP 0908:084,2009. 
          e-Print: arXiv:0905.3586 [hep-lat]

2.  Nearly conformal gauge theories in finite volume.
           Phys.Lett.B681:353-361,2009. 
           e-Print: arXiv:0907.4562 [hep-lat]

3.  Chiral properties of SU(3) sextet fermions
           e-Print: arXiv:0908.2466 [hep-lat]

4.  Chiral  symmetry breaking in nearly conformal gauge theories
           e-Print: arXiv:0911.2463 [hep-lat]   PoS Lattice 2009

5.  Calculating the running coupling in strong electroweak models          
           e-Print: arXiv:0911.2934 [hep-lat] 
           

and unpublished new sextet analysis soon to be published



Probing technicolor theories with staggered fermions Kieran Holland

Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.

1. Introduction

The LHC will probe the mechanism of electroweak symmetry breaking. A very attractive

alternative to the standard Higgs mechanism, with fundamental scalars, involves new strongly-

interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories

with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in

a technicolor theory, to provide the technipions which generate the W± and Z masses and break

electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-

surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the

theory (extended technicolor) to generate quark masses, without generating large flavor-changing

neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, due to the exploration of various tech-

niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with

electroweak constraints. If a theory is almost conformal, it is possible this generates additional

energy scales, which could help in building the extended technicolor sector. There are estimates

of which theories are conformal for various representations, shown in Fig. 1. For SU(N) gauge

theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].

2. Dirac eigenvalues and chiral symmetry

The connection between the eigenvalues ! of the Dirac operator and chiral symmetry breaking

2

Conformal windows in theory space

Banks-Zaks Fixed Point

BZ FP

We only run with N=3 colors 

Predictions from Schwinger-

Dyson approximations   
not reliable!

adjoint rep

2-index antisymmetric

Chris Schroeder and Daniel 
Nogradi are twin engines of two 
projects:

Project 1: in fundamental rep with 
N=3 colors with 
Nf=4,8,9,10,11,12,14,16,20 flavors

Project 2: 2-index symmetric rep 
(sextet)
N=3 colors and Nf=2 flavors

both projects use 2-stout 
dynamical staggered fermions 
tree-level Symanzik gauge action
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Evolution of nearly conformal gauge model with volume

What is the finite volume spectrum?
How does the running coupling         evolve with L?

At small        the zero momentum components of the gauge field
dominate the dynamics: Born-Oppenheimer approximation

Originally it was applied to pure-gauge system:   Luscher, van Baal

g2 (L)

g2 (L)

SU(3) pure-gauge model: 27 inequivalent vacua

Low excitations of Hamiltonian (Transfer Matrix) scale with 
will evolve into glueball states for large L

Three scales of dynamics:  (1) WF is localized on one vacuum            (perturbation theory)
                               (2) tunneling accross vacua on second scale (nonperturbative, calculable)
                               (3) over the barrier: confinement scale      (nonperturbative, not calculable) 
                        third stage is either broken chiral symmetry or conformal     

  g
2 /3(L) / L



Quantum vacuum is at minimum of Veff(C) when massless fermions are turned on
early work by van Baal, Kripfganz and Michael
Fermions develop a gap      /L in the spectrum

k=(1,1,1) antiperiodic   minimal when l=0 (mod 2   )  A=0
 
k=(0,0,0) periodic      minimal when           nontrivial vacua 

Polyakov loop distributions probe the vacua

  π

π

l
→
≠ 0

much improved action with four and six stout steps. This action
shows no artifact transitions and handles taste breaking much
more effectively. Firm conclusions on the Nf = 12 model will
require continued investigations.

5. Inside the conformal window

We start our investigation and simulations of the conformal
window at Nf = 16 which is the most accessible for analytic
methods. We are particularly interested in the qualitative behav-
ior of the finite volume spectrum of the model and the running
coupling with its associated beta function which is expected to
have a weak coupling fixed point around g∗2 ≈ 0.5, as estimated
from the scheme independent two-loop beta function [61].

5.1. Conformal dynamics in finite volume

A distinguished feature of the Nf = 16 conformal model is
how the renormalized coupling g2(L) runs with L, the linear
size of the spatial volume in a Hamiltonian or Transfer Matrix
description. On very small scales the running coupling g2(L)
grows with L as in any other asymptotically free theory. How-
ever, g2(L) will not grow large, and in the L → ∞ limit it will
converge to the fixed point g∗2 which is rather weak, within the
reach of perturbation theory. There is nontrivial small volume
dynamics which is illustrated first in the pure gauge sector.

At small g2, without fermions, the zero momentum compo-
nents of the gauge field are known to dominate the dynam-
ics [62–64]. With S U(3) gauge group, there are twenty seven
degenerate vacuum states, separated by energy barriers which
are generated by the integrated effects of the non-zero momen-
tum components of the gauge field in the Born-Oppenheimer
approximation. The lowest energy excitations of the gauge field
Hamiltonian scale as ∼ g2/3(L)/L evolving into glueball states
and becoming independent of the volume as the coupling con-
stant grows with L. Nontrivial dynamics evolves through three
stages as L grows. In the first regime, in very small boxes, tun-
neling is suppressed between vacua which remain isolated. In
the second regime, for larger L, tunneling sets in and electric
flux states will not be exponentially suppressed. Both regimes
represent small worlds with zero momentum spectra separated
from higher momentum modes of the theory with energies on
the scale of 2π/L. At large enough L the gauge dynamics over-
comes the energy barrier, and wave functions spread over the
vacuum valley. This third regime is the crossover to confine-
ment where the electric fluxes collapse into thin string states
wrapping around the box.

It is likely that a conformal theory with a weak coupling fixed
point at Nf = 16 will have only the first two regimes which
are common with QCD. Now the calculations have to include
fermion loops [65, 66]. The vacuum structure in small enough
volumes, for which the wave functional is sufficiently localized
around the vacuum configuration, remains calculable by adding
in one loop order the quantum effects of the fermion field fluctu-
ations. The spatially constant abelian gauge fields parametriz-
ing the vacuum valley are given by Ai(x) = T aCa

i /L where Ta
are the (N-1) generators for the Cartan subalgebra of S U(N).

For S U(3), T1 = λ3/2 and T2 = λ8/2. With Nf flavors of mass-
less fermion fields the effective potential of the constant mode
is given by

Vk
eff(Cb) =

�

i> j

V(Cb[µ(i)
b − µ

( j)
b ])− Nf

�

i

V(Cbµ(i)
b + πk), (17)

with k = 0 for periodic, or k = (1, 1, 1), for anti-periodic
boundary conditions on the fermion fields. The function V(C) is
the one-loop effective potential for Nf = 0 and the weight vec-
tors µ(i) are determined by the eigenvalues of the abelian gener-
ators. For SU(3) µ(1) = (1, 1,−2)/

√
12 and µ(2) = 1

2 (1,−1, 0).
The correct quantum vacuum is found at the minimum of
this effective potential which is dramatically changed by the
fermion loop contributions. The Polyakov loop observables re-
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Figure 6: Polyakov loop distributions, blue in the time-like and red in the space-
like directions, from our N f = 16 simulation with 164 volume at β = 18 with
tree level Symanzik improve gauge action and staggered fermions with six stout
steps. The fermion boundary condition is anti-periodic in the time direction and
periodic in the spatial directions.

main center elements at the new vacuum configurations with
complex values

Pj =
1
N

tr
�
exp(iCb

j Tb)
�
=

1
N

�

n

exp(iµ(n)
b Cb

j ) = exp(2πil j/N),

(18)
for S U(N). This implies that µ(n)

b Cb = 2πl/N (mod 2π), inde-
pendent of n, and Vk

eff = −Nf NV(2πl/N + πk). In the case of
anti-periodic boundary conditions, k = (1, 1, 1), this is mini-
mal only when l = 0 (mod 2π). The quantum vacuum in this
case is the naive one, A = 0 (Pj = 1). In the case of peri-
odic boundary conditions, k = 0, the vacua have l � 0, so
that Pj correspond to non-trivial center elements. For SU(3),
there are now 8 degenerate vacua characterized by eight dif-
ferent Polyakov loops, Pj = exp(±2πi/3). Since they are re-
lated by coordinate reflections, in a small volume parity (P) and
charge conjugation (C) are spontaneously broken, although CP
is still a good symmetry [65]. As shown in Fig. 6, our simula-
tions in the Nf = 16 model near the fixed point g∗2 confirm this
picture. In the weak coupling phase of the conformal window
the time-like Polyakov loop takes the real root, while the space-
like Polyakov loops always take the two other complex values,
as expected on the basis of the above picture. Our method next
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Check first that simulation reached stage 3 where testing begins in ernest



Nf=12  fundamental representation
(1) Chiral symmetry breaking hypothesis 

(2) First crude asymptotic tests include

       (a) Goldstone spectrum, parity partner?  tantalizing

       (b)              asymptotics                   difficult

       (c) NLO expansion in p regime               has question marks

       (d) Is F*L large enough?                     not at Nf=12

        (e) Can RMT help?                            only if F*L is large enough                  

(3) Use running coupling tests to complement chiral analysis (Kieran Holland’s talk)

(4) Check whether conformal picture provides alternative  what is it?
    has to be better then simple power fits of “anomalous dimensions”
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Goldstone dynamics is different in each regime 
We study            -regimes (RMT) 
and p-regime (probing chiral loops)
complement each other 
interpretation of rotator levels in          limit:

Chiral regimes to identify in theory space:

δ  and ε

mq → 0

Figure 1: The potential V (φ) for an unbroken
symmetry.

Figure 2: The potential V (φ) for a sponta-
neously broken symmetry. The arrow indi-
cates a possible choice of vacuum.

Since QCD describes a very large collection of phenomena at high energies extremely well, there
must thus be another way to include this symmetry in the real world. This was found by Goldstone [28]
and is often called the Nambu-Goldstone mode, while a direct realization is referred to as the Wigner
or Wigner-Eckart mode. Nambu’s papers for this are Ref. [29].

Let us first describe this mode for a simpler model. A complex scalar field with Lagrangian

L = ∂µφ∗∂µφ − V (φ) . (22)

We first look at a potential of the type shown in Fig. 1 with a standard form of the type

V (φ) = µ2φ∗φ + λ (φ∗φ)2 . (23)

We choose here λ > 0 to have a stable theory. This Lagrangian has a U(1) symmetry under the
phasetransformation

φ → e−iαφ . (24)

This transformation is rotation around the z-axis in Figs. 1 and 2.
If we choose µ2 > 0, the potential V (φ) has the form shown in Fig. 1, where the horizontal axes

are the real and imaginary part of φ while the vertical axis are V (φ). In order to have a full theory
we have to determine first the vacuum, or lowest energy state, of the system. The contribution of the
kinetic term, ∂µφ∗∂µ, is minimized by a constant and spatially homogenous field φ0. From the form of
the potential, we can see that the total energy is thus minimized for a value of φ0 = 0. I.e. 〈φ〉 = 0.
Excitations around the vacuum, which give the particle spectrum, have only massive modes with a mass
m = µ. Things to remark here: The vacuum is unique, i.e. there is only one possible choice of 〈φ〉.
There are two massive real modes in the spectrum corresponding to the real and imaginary part of φ.
The interactions of these particles are simply the four boson vertex directly present in the Lagrangian
(22). This mode corresponds to the most standard realization of symmetries like the realization of
rotation symmetries in standard quantum mechanics. States thus fall in multiplets of the symmetry
group and amplitudes obey the relations of the Wigner-Eckart theorem.

However, when we choose the potential with the same form but take µ2 < 0 the potential looks
differently as depicted in Fig. 2. The potential is still invariant under the symmetry (24), but now we
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Figure 1: The potential V (φ) for an unbroken
symmetry.

Figure 2: The potential V (φ) for a sponta-
neously broken symmetry. The arrow indi-
cates a possible choice of vacuum.

Since QCD describes a very large collection of phenomena at high energies extremely well, there
must thus be another way to include this symmetry in the real world. This was found by Goldstone [28]
and is often called the Nambu-Goldstone mode, while a direct realization is referred to as the Wigner
or Wigner-Eckart mode. Nambu’s papers for this are Ref. [29].

Let us first describe this mode for a simpler model. A complex scalar field with Lagrangian

L = ∂µφ∗∂µφ − V (φ) . (22)

We first look at a potential of the type shown in Fig. 1 with a standard form of the type

V (φ) = µ2φ∗φ + λ (φ∗φ)2 . (23)

We choose here λ > 0 to have a stable theory. This Lagrangian has a U(1) symmetry under the
phasetransformation

φ → e−iαφ . (24)

This transformation is rotation around the z-axis in Figs. 1 and 2.
If we choose µ2 > 0, the potential V (φ) has the form shown in Fig. 1, where the horizontal axes

are the real and imaginary part of φ while the vertical axis are V (φ). In order to have a full theory
we have to determine first the vacuum, or lowest energy state, of the system. The contribution of the
kinetic term, ∂µφ∗∂µ, is minimized by a constant and spatially homogenous field φ0. From the form of
the potential, we can see that the total energy is thus minimized for a value of φ0 = 0. I.e. 〈φ〉 = 0.
Excitations around the vacuum, which give the particle spectrum, have only massive modes with a mass
m = µ. Things to remark here: The vacuum is unique, i.e. there is only one possible choice of 〈φ〉.
There are two massive real modes in the spectrum corresponding to the real and imaginary part of φ.
The interactions of these particles are simply the four boson vertex directly present in the Lagrangian
(22). This mode corresponds to the most standard realization of symmetries like the realization of
rotation symmetries in standard quantum mechanics. States thus fall in multiplets of the symmetry
group and amplitudes obey the relations of the Wigner-Eckart theorem.

However, when we choose the potential with the same form but take µ2 < 0 the potential looks
differently as depicted in Fig. 2. The potential is still invariant under the symmetry (24), but now we
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Figure 3: The potential V (φ) for a spontaneously broken symmetry in the presence of a
small explicit symmetry breaking term. The arrow indicates now the only possible choice of
vacuum.

The linear term in η can be removed by a small additional shift. This happened because the lowest

energy state is slightly shifted compared to the value v =
√

−µ2/λ. But more importantly, when we
expand the exponentials, we now find that the π(x)-field has gotten a small mass, small compared to
the mass of the η-field, and no longer has only derivative interactions. The π mass

m2
π ≈

2
√

2β

v
. (33)

is small and can be expanded in the small symmetry breaking parameter β. The particle corresponding
to it, is now called a pseudo-Goldstone boson. As long as the explicit symmetry breaking is small, we
can still use Goldstone’s theorem as a first approximation and then add the corrections systematically.
This is precisely what we do in ChPT when the light quark masses are explicitly included.

2.5 Spontaneous symmetry breaking in QCD

We already argued in Sect. 2.3 that the chiral symmetry of QCD cannot be realized in nature since
the predicted parity doublets do not occur. We thus expect the chiral symmetry to be realized in the
Nambu-Goldstone mode. What theoretical evidence do we have directly for this?

Most of the remainder of this paper is about the Goldstone bosons from the spontaneous chiral
symmetry breakdown and their properties. In this way, all those properties are strong indications that
the picture described below is correct. However let us first give the full theoretical arguments.

• It has been proven that the chiral symmetry is spontaneously broken in the limit of a large number
of colours and assuming confinement [31].

• The vector symmetries remain unbroken in a vectorlike symmetry as QCD [32].

• Assuming confinement, the anomalies in the effective low-energy theory must match those for the
underlying QCD theory. For two flavours, this can be done but not for three or more flavours.
We thus need spontaneous symmetry breaking in order to have a correct anomaly matching for
three or more flavours [33].

We thus believe that the flavour symmetry SU(nF )× SU(nF ) is spontaneously broken down to the
diagonal subgroup SU(nF )V = SU(nF )L+R also for the realistic case of three flavours. There are eight
broken generators and we thus expect eight Goldstone boson degrees of freedom. If we look at the
hadron spectrum there are eight natural candidates for this. The three pions, π0, π±, four kaons, K±,
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mq = 0

Veff: chiral condensate in flavor space
arbitrary orientation of condensate

mq ≠ 0

tilted condensate

Not to misidentify rotator gaps
as evidence of chirally symmetric 
phase !!



One-loop expansion in our analysis of p-regime:

chiral p-regime
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mq = 0

For arbitrary Nf , in the continuum and in infinite volume,
the one-loop chiral corrections to Mπ and Fπ of the degenerate
Goldstone pions are given by

M2
π = M2

�
1 − M2

8π2Nf F2 ln
�
Λ3

M

��
, (11)

Fπ = F
�
1 +

Nf M2

16π2F2 ln
�
Λ4

M

��
, (12)

where M2 = 2B · mq and F, B,Λ3,Λ4 are four fundamental pa-
rameters of the chiral Lagrangian and the small quark mass mq
explicitly breaks the symmetry [52]. The chiral parameters F, B
appear in the leading part of the Lagrangian in Eq. (2), while
Λ3,Λ4 enter in next order. There is the well-known GMOR re-
lation Σcond = BF2 in the mq → 0 limit for the chiral condensate
per unit flavor [53]. It is important to note that the one-loop cor-
rection to the pion coupling constant Fπ is enhanced by a factor
N2

f compared to M2
π. The chiral expansion for large Nf will

break down for Fπ much faster for a given Mπ/Fπ ratio.
The finite volume corrections to Mπ and Fπ are given in the

p-regime by

Mπ(Ls, η) = Mπ
�
1 +

1
2Nf

M2

16π2F2 ·�g1(λ, η)
�
, (13)

Fπ(Ls, η) = Fπ
�
1 − Nf

2
M2

16π2F2 ·�g1(λ, η)
�
, (14)

where�g1(λ, η) describes the finite volume corrections with λ =
M · Ls and aspect ratio η = Lt/Ls. The form of �g1(λ, η) is a
complicated infinite sum which contains Bessel functions and
requires numerical evaluation [51]. Eqs. (11-14) provide the
foundation of the p-regime fits in our simulations.

2.3. δ-regime and �-regime
At fixed Ls and in cylindrical geometry Lt/Ls � 1, a

crossover occurs from the p-regime to the δ-regime when mq →
0, as shown in Fig. 1. The dynamics is dominated by the rotator
states of the chiral condensate in this limit [54] which is charac-
terized by the conditions FLs > 1 and MLs � 1. The densely
spaced rotator spectrum scales with gaps of the order ∼ 1/F2L3

s ,
and at mq = 0 the chiral symmetry is apparently restored. How-
ever, the rotator spectrum, even at mq = 0 in the finite volume,
will signal that the infinite system is in the chirally broken phase
for the particular parameter set of the Lagrangian. This is of-
ten misunderstood in the interpretation of lattice simulations.
Measuring finite energy levels with pion quantum numbers at
fixed Ls in the mq → 0 limit is not a signal for chiral symmetry
restoration of the infinite system [36].

If Lt ∼ Ls under the conditions FLs > 1 and MLs � 1, the
system will be driven into the �-regime which can be viewed
as the high temperature limit of the δ-regime quantum rotator.
Although the δ-regime and �-regime have an overlapping re-
gion, there is an important difference in their dynamics. In the
δ-regime of the quantum rotator, the zero spatial momentum
of the pion field U(x) dominates with time-dependent quantum
dynamics. The �-regime is dominated by the four-dimensional
zero momentum mode of the chiral Lagrangian.
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Figure 1: Schematic plot of the regions in which the three low energy chi-
ral expansions are valid. The vertical axis shows the finite temperature scale
(euclidean time in the path integral) which probes the rotator dynamics of the
δ-regime and the �-regime. The first two low lying rotator levels are also shown
on the vertical axis for the simple case of N f = 2. The fourfold degenerate
lowest rotator excitation at mq = 0 will split into an isotriplet state (lowest en-
ergy level), which evolves into the p-regime pion as mq increases, and into an
isosinglet state representing a multi-pion state in the p-regime. Higher rotator
excitations have similar interpretations.
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Figure 2: The crossover from the p-regime to the δ-regime is shown for the π
and πi5 states at N f = 4.

We report simulation results of all three regimes in the chi-
rally broken phase of the technicolor models we investigate.
The analysis of the three regimes complement each other and
provide cross-checks for the correct identification of the phases.
First, we will probe Eqs.(11-14) in the p-regime, and follow
with the study of Dirac spectra and RMT eigenvalue distribu-
tions in the �-regime. The spectrum in the δ-regime is used as a
signal to monitor p-regime spectra as mq decreases. Fig. 2 is an
illustrative example for this crossover in our simulations.

3. Simulations results in the p-regime

The tree level improved Symanzik gauge action was used in
our simulations. The link variables in the staggered fermion

3

For arbitrary Nf , in the continuum and in infinite volume,
the one-loop chiral corrections to Mπ and Fπ of the degenerate
Goldstone pions are given by
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where M2 = 2B · mq and F, B,Λ3,Λ4 are four fundamental pa-
rameters of the chiral Lagrangian and the small quark mass mq
explicitly breaks the symmetry [52]. The chiral parameters F, B
appear in the leading part of the Lagrangian in Eq. (2), while
Λ3,Λ4 enter in next order. There is the well-known GMOR re-
lation Σcond = BF2 in the mq → 0 limit for the chiral condensate
per unit flavor [53]. It is important to note that the one-loop cor-
rection to the pion coupling constant Fπ is enhanced by a factor
N2

f compared to M2
π. The chiral expansion for large Nf will

break down for Fπ much faster for a given Mπ/Fπ ratio.
The finite volume corrections to Mπ and Fπ are given in the

p-regime by
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where�g1(λ, η) describes the finite volume corrections with λ =
M · Ls and aspect ratio η = Lt/Ls. The form of �g1(λ, η) is a
complicated infinite sum which contains Bessel functions and
requires numerical evaluation [51]. Eqs. (11-14) provide the
foundation of the p-regime fits in our simulations.

2.3. δ-regime and �-regime
At fixed Ls and in cylindrical geometry Lt/Ls � 1, a

crossover occurs from the p-regime to the δ-regime when mq →
0, as shown in Fig. 1. The dynamics is dominated by the rotator
states of the chiral condensate in this limit [54] which is charac-
terized by the conditions FLs > 1 and MLs � 1. The densely
spaced rotator spectrum scales with gaps of the order ∼ 1/F2L3

s ,
and at mq = 0 the chiral symmetry is apparently restored. How-
ever, the rotator spectrum, even at mq = 0 in the finite volume,
will signal that the infinite system is in the chirally broken phase
for the particular parameter set of the Lagrangian. This is of-
ten misunderstood in the interpretation of lattice simulations.
Measuring finite energy levels with pion quantum numbers at
fixed Ls in the mq → 0 limit is not a signal for chiral symmetry
restoration of the infinite system [36].

If Lt ∼ Ls under the conditions FLs > 1 and MLs � 1, the
system will be driven into the �-regime which can be viewed
as the high temperature limit of the δ-regime quantum rotator.
Although the δ-regime and �-regime have an overlapping re-
gion, there is an important difference in their dynamics. In the
δ-regime of the quantum rotator, the zero spatial momentum
of the pion field U(x) dominates with time-dependent quantum
dynamics. The �-regime is dominated by the four-dimensional
zero momentum mode of the chiral Lagrangian.
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Figure 1: Schematic plot of the regions in which the three low energy chi-
ral expansions are valid. The vertical axis shows the finite temperature scale
(euclidean time in the path integral) which probes the rotator dynamics of the
δ-regime and the �-regime. The first two low lying rotator levels are also shown
on the vertical axis for the simple case of N f = 2. The fourfold degenerate
lowest rotator excitation at mq = 0 will split into an isotriplet state (lowest en-
ergy level), which evolves into the p-regime pion as mq increases, and into an
isosinglet state representing a multi-pion state in the p-regime. Higher rotator
excitations have similar interpretations.
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Figure 2: The crossover from the p-regime to the δ-regime is shown for the π
and πi5 states at N f = 4.

We report simulation results of all three regimes in the chi-
rally broken phase of the technicolor models we investigate.
The analysis of the three regimes complement each other and
provide cross-checks for the correct identification of the phases.
First, we will probe Eqs.(11-14) in the p-regime, and follow
with the study of Dirac spectra and RMT eigenvalue distribu-
tions in the �-regime. The spectrum in the δ-regime is used as a
signal to monitor p-regime spectra as mq decreases. Fig. 2 is an
illustrative example for this crossover in our simulations.

3. Simulations results in the p-regime

The tree level improved Symanzik gauge action was used in
our simulations. The link variables in the staggered fermion

3

Note Nf scaling of pion mass!
warning: 2-loop ~ Nf^2  (Bijnens)

λ = MLs

We use staggered action with stout smearing
Taste breaking can be included in staggered perturbation  theory!
structure changing as Nf grows
If F*L is not large enough, everything is beginning to break

Leutwyer, Gasser, P. Hasenfratz, 
Niedermayer, Hansen, Neuberger, ...



Nf=12 runs are away from crossover region !
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Nf=12 new NLO beta=2.2 chiral analysis in p-regime:
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Even then F*L squeeze remains a problem
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Some features of Nf=4,8,9,12 runs:

Nearly degenerate Goldstone spectra
stout action performs very well

Chiral condensate measured in F unit
is enhanced as Nf increases

Nf=4    B/F = 53(6)    
Nf=8    B/F = 157(17)
Nf=12   B/F = 173(32)
large errors, preliminary, limited to Ls=32!

rho - A1 splitting resolution in chiral limit requires lower mq
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Better separation of rho and Goldstones 
toward chiral limit at Nf=12 would require 
bigger runs at smaller fermion masses
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El =
1

2θ
l(l + 2) with l = 0,1,2,...    rotator spectrum for SU(2)

with θ = F2L3
s (1+

C(N f = 2)
F2L2

s

+O(1 / F 4L4
s ))   (P. Hasenfratz and F. Niedermayer)

 there is  overall factor 
N 2

f −1
N f

 for arbitrary N f

C(N f = 2) = 0.45  expected to grow with N f

At FLs = 0.8  the correction is 70% and grows with N f

When expansion collapses in δ − regime, the p-regime analysis needs more scrutiny 

The  F*L  squeeze
(epsilon, delta and p regimes are all connected)

Cross checks from several running coupling schemes is important 

expansion in 1/F2L2



The Nf=2 sextet model simulations

(1) Similar check list and warnings as Nf=12 case

(2) However, Nf=2 makes it easier

(3) Analysis is preliminary!

(4) So far quite consistent with chiral symmetry breaking

(5) Unlike Nf=12 case, no intrinsic barriers with
    NNLO convergence, F*L squeeze, ...

(6) We are running our couplings (Kieran Holland’s talk)
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The Nf=2 sextet model simulations

2step stout staggered fermions 
tree-level Symanzik gauge action

approximate taste degeneracy reached

Why is the chiral condensate so small?
ψψ ≈ 0.0025 expected at β=3.3

from chiral fit of B and F
ψψ = N f BF
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For arbitrary Nf , in the continuum and in infinite volume,
the one-loop chiral corrections to Mπ and Fπ of the degenerate
Goldstone pions are given by

M2
π = M2

�
1 − M2

8π2Nf F2 ln
�
Λ3

M

��
, (11)

Fπ = F
�
1 +

Nf M2

16π2F2 ln
�
Λ4

M

��
, (12)

where M2 = 2B · mq and F, B,Λ3,Λ4 are four fundamental pa-
rameters of the chiral Lagrangian and the small quark mass mq
explicitly breaks the symmetry [52]. The chiral parameters F, B
appear in the leading part of the Lagrangian in Eq. (2), while
Λ3,Λ4 enter in next order. There is the well-known GMOR re-
lation Σcond = BF2 in the mq → 0 limit for the chiral condensate
per unit flavor [53]. It is important to note that the one-loop cor-
rection to the pion coupling constant Fπ is enhanced by a factor
N2

f compared to M2
π. The chiral expansion for large Nf will

break down for Fπ much faster for a given Mπ/Fπ ratio.
The finite volume corrections to Mπ and Fπ are given in the

p-regime by

Mπ(Ls, η) = Mπ
�
1 +

1
2Nf

M2

16π2F2 ·�g1(λ, η)
�
, (13)

Fπ(Ls, η) = Fπ
�
1 − Nf

2
M2

16π2F2 ·�g1(λ, η)
�
, (14)

where�g1(λ, η) describes the finite volume corrections with λ =
M · Ls and aspect ratio η = Lt/Ls. The form of �g1(λ, η) is a
complicated infinite sum which contains Bessel functions and
requires numerical evaluation [51]. Eqs. (11-14) provide the
foundation of the p-regime fits in our simulations.

2.3. δ-regime and �-regime
At fixed Ls and in cylindrical geometry Lt/Ls � 1, a

crossover occurs from the p-regime to the δ-regime when mq →
0, as shown in Fig. 1. The dynamics is dominated by the rotator
states of the chiral condensate in this limit [54] which is charac-
terized by the conditions FLs > 1 and MLs � 1. The densely
spaced rotator spectrum scales with gaps of the order ∼ 1/F2L3

s ,
and at mq = 0 the chiral symmetry is apparently restored. How-
ever, the rotator spectrum, even at mq = 0 in the finite volume,
will signal that the infinite system is in the chirally broken phase
for the particular parameter set of the Lagrangian. This is of-
ten misunderstood in the interpretation of lattice simulations.
Measuring finite energy levels with pion quantum numbers at
fixed Ls in the mq → 0 limit is not a signal for chiral symmetry
restoration of the infinite system [36].

If Lt ∼ Ls under the conditions FLs > 1 and MLs � 1, the
system will be driven into the �-regime which can be viewed
as the high temperature limit of the δ-regime quantum rotator.
Although the δ-regime and �-regime have an overlapping re-
gion, there is an important difference in their dynamics. In the
δ-regime of the quantum rotator, the zero spatial momentum
of the pion field U(x) dominates with time-dependent quantum
dynamics. The �-regime is dominated by the four-dimensional
zero momentum mode of the chiral Lagrangian.
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Figure 1: Schematic plot of the regions in which the three low energy chi-
ral expansions are valid. The vertical axis shows the finite temperature scale
(euclidean time in the path integral) which probes the rotator dynamics of the
δ-regime and the �-regime. The first two low lying rotator levels are also shown
on the vertical axis for the simple case of N f = 2. The fourfold degenerate
lowest rotator excitation at mq = 0 will split into an isotriplet state (lowest en-
ergy level), which evolves into the p-regime pion as mq increases, and into an
isosinglet state representing a multi-pion state in the p-regime. Higher rotator
excitations have similar interpretations.
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Figure 2: The crossover from the p-regime to the δ-regime is shown for the π
and πi5 states at N f = 4.

We report simulation results of all three regimes in the chi-
rally broken phase of the technicolor models we investigate.
The analysis of the three regimes complement each other and
provide cross-checks for the correct identification of the phases.
First, we will probe Eqs.(11-14) in the p-regime, and follow
with the study of Dirac spectra and RMT eigenvalue distribu-
tions in the �-regime. The spectrum in the δ-regime is used as a
signal to monitor p-regime spectra as mq decreases. Fig. 2 is an
illustrative example for this crossover in our simulations.

3. Simulations results in the p-regime

The tree level improved Symanzik gauge action was used in
our simulations. The link variables in the staggered fermion
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For arbitrary Nf , in the continuum and in infinite volume,
the one-loop chiral corrections to Mπ and Fπ of the degenerate
Goldstone pions are given by
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where M2 = 2B · mq and F, B,Λ3,Λ4 are four fundamental pa-
rameters of the chiral Lagrangian and the small quark mass mq
explicitly breaks the symmetry [52]. The chiral parameters F, B
appear in the leading part of the Lagrangian in Eq. (2), while
Λ3,Λ4 enter in next order. There is the well-known GMOR re-
lation Σcond = BF2 in the mq → 0 limit for the chiral condensate
per unit flavor [53]. It is important to note that the one-loop cor-
rection to the pion coupling constant Fπ is enhanced by a factor
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f compared to M2
π. The chiral expansion for large Nf will

break down for Fπ much faster for a given Mπ/Fπ ratio.
The finite volume corrections to Mπ and Fπ are given in the

p-regime by

Mπ(Ls, η) = Mπ
�
1 +

1
2Nf

M2

16π2F2 ·�g1(λ, η)
�
, (13)

Fπ(Ls, η) = Fπ
�
1 − Nf

2
M2

16π2F2 ·�g1(λ, η)
�
, (14)

where�g1(λ, η) describes the finite volume corrections with λ =
M · Ls and aspect ratio η = Lt/Ls. The form of �g1(λ, η) is a
complicated infinite sum which contains Bessel functions and
requires numerical evaluation [51]. Eqs. (11-14) provide the
foundation of the p-regime fits in our simulations.

2.3. δ-regime and �-regime
At fixed Ls and in cylindrical geometry Lt/Ls � 1, a

crossover occurs from the p-regime to the δ-regime when mq →
0, as shown in Fig. 1. The dynamics is dominated by the rotator
states of the chiral condensate in this limit [54] which is charac-
terized by the conditions FLs > 1 and MLs � 1. The densely
spaced rotator spectrum scales with gaps of the order ∼ 1/F2L3

s ,
and at mq = 0 the chiral symmetry is apparently restored. How-
ever, the rotator spectrum, even at mq = 0 in the finite volume,
will signal that the infinite system is in the chirally broken phase
for the particular parameter set of the Lagrangian. This is of-
ten misunderstood in the interpretation of lattice simulations.
Measuring finite energy levels with pion quantum numbers at
fixed Ls in the mq → 0 limit is not a signal for chiral symmetry
restoration of the infinite system [36].

If Lt ∼ Ls under the conditions FLs > 1 and MLs � 1, the
system will be driven into the �-regime which can be viewed
as the high temperature limit of the δ-regime quantum rotator.
Although the δ-regime and �-regime have an overlapping re-
gion, there is an important difference in their dynamics. In the
δ-regime of the quantum rotator, the zero spatial momentum
of the pion field U(x) dominates with time-dependent quantum
dynamics. The �-regime is dominated by the four-dimensional
zero momentum mode of the chiral Lagrangian.
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Figure 1: Schematic plot of the regions in which the three low energy chi-
ral expansions are valid. The vertical axis shows the finite temperature scale
(euclidean time in the path integral) which probes the rotator dynamics of the
δ-regime and the �-regime. The first two low lying rotator levels are also shown
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We report simulation results of all three regimes in the chi-
rally broken phase of the technicolor models we investigate.
The analysis of the three regimes complement each other and
provide cross-checks for the correct identification of the phases.
First, we will probe Eqs.(11-14) in the p-regime, and follow
with the study of Dirac spectra and RMT eigenvalue distribu-
tions in the �-regime. The spectrum in the δ-regime is used as a
signal to monitor p-regime spectra as mq decreases. Fig. 2 is an
illustrative example for this crossover in our simulations.

3. Simulations results in the p-regime

The tree level improved Symanzik gauge action was used in
our simulations. The link variables in the staggered fermion

3

π

π

π

π

input

 

λ = MπL,        η= LT
LS

g(λ,η) is a shape-dependent expansion
in terms of infinite series of Bessel functions

M 2 = 2Bmq

re-expand in ξ =
2Bmq

16π 2F2  to O(ξ) accuracy

 B, F, Λ3,Λ4  are the four fitted parameters

Next-to-leading-order fitting procedure of the chiral analysis

NLO chiral fitting procedure of the Nf=2 sextet model simulations

Our simulations of the model are not accurate for NNLO analysis with taste breaking
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stored on the disk. Then, by using the eigenmodes to
construct a preconditioner, the inversion of the overlap-
Dirac operator can be done with only ! 15% of the CPU
time of the full calculation. The low modes are also used to
improve the statistical accuracy by averaging their contri-
bution to the correlators over 32 source points distributed
in each time slice. The correlators are calculated with a
point source and a smeared source; the pion mass m! and
decay constant f! are obtained from a simultaneous fit of
them.

The pion decay constant f! is defined through
h0jA"j!ðpÞi ¼ if!p", where A" is the (continuum)

isotriplet axial-vector current. Instead ofA", we calculate

the matrix element of pseudoscalar density Plat on the
lattice using the partially-conserved–axial-vector-current
constraint relation @"A" ¼ 2mlat

q Plat with mlat
q the bare

quark mass. Since the combination mlat
q Plat is not renor-

malized, no renormalization factor is needed in the calcu-
lation of f!. This is possible only when the chiral
symmetry is exact. The renormalization factor for the

quark mass mq ¼ ZMS
m ð2 GeVÞmlat

q is calculated nonper-

turbatively through the RI/MOM scheme, with which the
renormalization condition is applied at some off-shell mo-
mentum for propagators and vertex functions. Such a non-
perturbative calculation suffers from the nontrivial quark
mass dependence of the chiral condensate. By using the
calculated low-modes explicitly, we are able to control the

mass dependence to determine ZRI=MOM
m more reliably. In

the chiral limit, we obtain ZMS
m ð2 GeVÞ ¼ 0:838ð14Þð03Þ,

where the second error arises from a subtraction of power
divergence from the chiral condensate. The details of this
calculation will be given elsewhere.

Since our numerical simulation is done on a finite vol-
ume lattice with m!Ls ’ 2:9 for the lightest sea quark, the
finite volume effect could be significant. We make a cor-
rection for the finite volume effect using the estimate
within ChPT calculated up to O½m4

!=ð4!f!Þ4& [8]. The
size of the corrections for m2

! and f! is about 5% for the
lightest pion mass and exponentially suppressed for heav-
ier data points. In addition, there is a correction due to
fixing the global topological charge in our simulation [7,9].
This leads to a finite volume effect of Oð1=VÞ with V the
physical space-time volume. The correction is calculable
within ChPT [10,11] depending on the value of topological
susceptibility #t, which we calculated in [12]. At next-to-
leading order (NLO), the correction for m2

! is similar in
magnitude but opposite in sign to the ordinary finite vol-
ume effect at the lightest pion mass, and thus almost
cancels. For f! the finite volume effect due to the fixed
topology starts at NLO and therefore is a subdominant
effect. Note that the LECs appear in the calculation of
these correction factors. We use their phenomenological
values at the scale of physical (charged) pion mass m!þ ¼
139:6 MeV: !lphys1 ¼ (0:4) 0:6, !lphys2 ¼ 4:3) 0:1, !lphys4 ¼

4:4) 0:2, determined at the NNLO [2] and !lphys3 ¼ 2:9)
2:4. The errors in these values are reflected in the following
analysis assuming a Gaussian distribution.
After applying the finite volume corrections, we first

analyze the numerical data for m2
!=mq and f! using the

ChPT formulas at NLO,

m2
!=mq ¼ 2Bð1þ 1

2x lnxÞ þ c3x; (1)

f! ¼ fð1( x lnxÞ þ c4x; (2)

where f is the pion decay constant in the chiral limit and B
is related to the chiral condensate. Here the expansion is
made in terms of x * 4Bmq=ð4!fÞ2. The parameters c3
and c4 are related to the LECs !lphys3 and !lphys4 , respectively.
At NLO, i.e., OðxÞ, these expressions are unchanged when
one replaces the expansion parameter x by x̂ *
2m2

!=ð4!fÞ2 or $ * 2m2
!=ð4!f!Þ2, where m! and f!

denote those at a finite quark mass. Therefore, in a small
enough pion mass region the three expansion parameters
should describe the lattice data equally well.
Three fit curves (x fit, x̂ fit, and $ fit) for the three lightest

pion mass points (m! & 450 MeV) are shown in Fig. 1 as a
function ofm2

!. From the plot we observe that the different
expansion parameters seem to describe the three lightest
points equally well; the values of #2=dof are 0.30, 0.33,
and 0.66 for x, x̂, and $ fits. In each fit, the correlation
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FIG. 1 (color online). Comparison of the chiral fits including
the NLO terms for m2

!=mq (top) and f! (bottom). Fit curves to
three lightest data points obtained with different choices of the
expansion parameter (x, x̂, and $) are shown as a function of m2

!.
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construct a preconditioner, the inversion of the overlap-
Dirac operator can be done with only ! 15% of the CPU
time of the full calculation. The low modes are also used to
improve the statistical accuracy by averaging their contri-
bution to the correlators over 32 source points distributed
in each time slice. The correlators are calculated with a
point source and a smeared source; the pion mass m! and
decay constant f! are obtained from a simultaneous fit of
them.

The pion decay constant f! is defined through
h0jA"j!ðpÞi ¼ if!p", where A" is the (continuum)

isotriplet axial-vector current. Instead ofA", we calculate

the matrix element of pseudoscalar density Plat on the
lattice using the partially-conserved–axial-vector-current
constraint relation @"A" ¼ 2mlat

q Plat with mlat
q the bare

quark mass. Since the combination mlat
q Plat is not renor-

malized, no renormalization factor is needed in the calcu-
lation of f!. This is possible only when the chiral
symmetry is exact. The renormalization factor for the

quark mass mq ¼ ZMS
m ð2 GeVÞmlat

q is calculated nonper-

turbatively through the RI/MOM scheme, with which the
renormalization condition is applied at some off-shell mo-
mentum for propagators and vertex functions. Such a non-
perturbative calculation suffers from the nontrivial quark
mass dependence of the chiral condensate. By using the
calculated low-modes explicitly, we are able to control the

mass dependence to determine ZRI=MOM
m more reliably. In

the chiral limit, we obtain ZMS
m ð2 GeVÞ ¼ 0:838ð14Þð03Þ,

where the second error arises from a subtraction of power
divergence from the chiral condensate. The details of this
calculation will be given elsewhere.

Since our numerical simulation is done on a finite vol-
ume lattice with m!Ls ’ 2:9 for the lightest sea quark, the
finite volume effect could be significant. We make a cor-
rection for the finite volume effect using the estimate
within ChPT calculated up to O½m4

!=ð4!f!Þ4& [8]. The
size of the corrections for m2

! and f! is about 5% for the
lightest pion mass and exponentially suppressed for heav-
ier data points. In addition, there is a correction due to
fixing the global topological charge in our simulation [7,9].
This leads to a finite volume effect of Oð1=VÞ with V the
physical space-time volume. The correction is calculable
within ChPT [10,11] depending on the value of topological
susceptibility #t, which we calculated in [12]. At next-to-
leading order (NLO), the correction for m2

! is similar in
magnitude but opposite in sign to the ordinary finite vol-
ume effect at the lightest pion mass, and thus almost
cancels. For f! the finite volume effect due to the fixed
topology starts at NLO and therefore is a subdominant
effect. Note that the LECs appear in the calculation of
these correction factors. We use their phenomenological
values at the scale of physical (charged) pion mass m!þ ¼
139:6 MeV: !lphys1 ¼ (0:4) 0:6, !lphys2 ¼ 4:3) 0:1, !lphys4 ¼

4:4) 0:2, determined at the NNLO [2] and !lphys3 ¼ 2:9)
2:4. The errors in these values are reflected in the following
analysis assuming a Gaussian distribution.
After applying the finite volume corrections, we first

analyze the numerical data for m2
!=mq and f! using the

ChPT formulas at NLO,

m2
!=mq ¼ 2Bð1þ 1

2x lnxÞ þ c3x; (1)

f! ¼ fð1( x lnxÞ þ c4x; (2)

where f is the pion decay constant in the chiral limit and B
is related to the chiral condensate. Here the expansion is
made in terms of x * 4Bmq=ð4!fÞ2. The parameters c3
and c4 are related to the LECs !lphys3 and !lphys4 , respectively.
At NLO, i.e., OðxÞ, these expressions are unchanged when
one replaces the expansion parameter x by x̂ *
2m2

!=ð4!fÞ2 or $ * 2m2
!=ð4!f!Þ2, where m! and f!

denote those at a finite quark mass. Therefore, in a small
enough pion mass region the three expansion parameters
should describe the lattice data equally well.
Three fit curves (x fit, x̂ fit, and $ fit) for the three lightest

pion mass points (m! & 450 MeV) are shown in Fig. 1 as a
function ofm2

!. From the plot we observe that the different
expansion parameters seem to describe the three lightest
points equally well; the values of #2=dof are 0.30, 0.33,
and 0.66 for x, x̂, and $ fits. In each fit, the correlation
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the NLO terms for m2

!=mq (top) and f! (bottom). Fit curves to
three lightest data points obtained with different choices of the
expansion parameter (x, x̂, and $) are shown as a function of m2
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Conclusions and Outlook

1. Nf=12 is consistent with chiral symmetry breaking
- to overcome limitations would require big resources 
- worth it?

2. Nf=2 sextet consistent with chiral symmetry breaking
- easier to control F*L and Nf expansions within our resources
- full chiral analysis can be done

3. Important to complement with running couplings


