Charmonium spectroscopy from $N_f = 2 + 1$ dynamical anisotropic lattices

Sinéad M. Ryan

School of Mathematics, Trinity College, Dublin for the Hadron Spectrum Collaboration

Lattice 2010, Sardinia

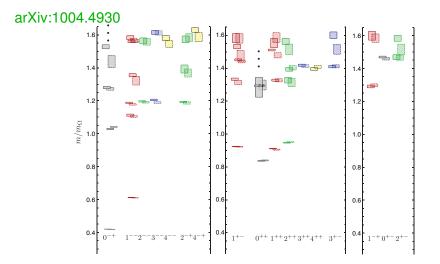
Plan

- Introduction: charmonium; the challenges.
- Lattices.
- Techniques:
 - Particle identification and spin on the lattice.
 - Operator construction (up to 2 derivatives in this work).
 - Distillation: a new definition of smearing and determination of all elements of the quark propagator. [M. Peardon, tomorrow].
 - Variational analysis (not yet incorporated).
- Results.
- Conclusions.

More sophisticated, complete analyses of the low-lying light meson and baryon spectra presented by C. Thomas on Monday & S. Wallace on Tuesday.

Also, J. Foley, C.K. Wong and K.J. Juge presented new results using distillation technology yesterday.

Introduction: why now for Charmonium?


- New experimental results for Charmonium are motivating lattice studies.
 - $\bullet~\sim 10$ new resonances in 5 years.
 - many at variance with nonrelativistic quark model predictions (eg X(3872)).
 - can we understand the structure of these states: $c\bar{c}$ à la quark model, hybrid states, tetraquark or molecular states.
 - the lightest hybrid charmonium state is expected at > 4.3GeV, the $D\overline{D}$ threshold is above 3.7GeV \Rightarrow threshold effects are important.
- In principle lattice QCD can help to shed light on the nature of the excited spectrum of *cc* states.

PRD 74 014505,2006 and PRD 79 034502,2009

- Quark field dynamics included in the importance sampling
- 3, 2+1 dynamical flavours
- Anisotropic lattice to enhance temporal resolution. Non-perturbatively tuned to $a_s/a_t = 3.5$.
- Tree-level Symanzik-improved gauge action
- Sheikholeslami-Wohlert quark action
- Spatial stout-link background for quark propagation

Status	N _f	Volume	m_{π}	$a_{(m_{\Omega})}^{-1}$
Exploratory	3	$12^{3} \times 96$	702MeV	4.76 GeV
Preliminary	2+1	$16^3 imes 128$	392MeV	5.67 GeV

Light meson spectrum

Spin assignment from lattice states

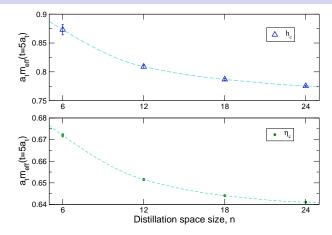
Continuum spin assignment: form the representations of O_h subduced from O(3). Multiplicities:

J	0	1	2	3	4
A ₁ , dim 1	1	0	0	0	1
<mark>A</mark> ₂ , dim 1	0	0	0	1	0
<i>E</i> , dim 2	0	0	1	0	1
7 1, dim 3	0	1	0	1	1
<mark>7</mark> 2, dim 3	0	0	1	1	1

- Degeneracies across lattice irreps as continuum is approached.
- Difficulty for charmonium: small HFS, near-degeneracy of many states with different spin assignments.
- A pathological example: hard to distinguish near-degenerate triplet of spin 0,1,2 from spin 4. Both: A₁ ⊕ T₁ ⊕ E ⊕ T₂. Can a radial excitation of P-wave c̄c be distinguished from 4⁺⁺ F-wave?

Distillation I: Smearing redefined

Phys.Rev.D80:054506,2009; and M. Peardon talk tomorrow

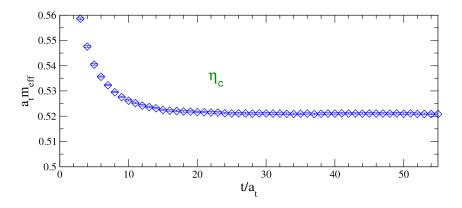

 Redefine smearing to be a projection operator onto a low-dimensional space of fields:

$$\Box = \sum_{k=1}^{M} \mathbf{v}^{(k)} \otimes \mathbf{v}^{(k)*}$$

- This is distillation.
- How to choose ν? the lowest M eigenvectors of Δ², the lattice Laplacian. Not unique.

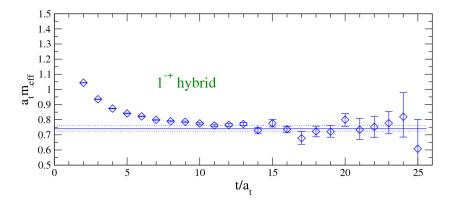
Very useful for excited states, disconnected diagrams and multi-hadron states.

How big should the distillation space be?



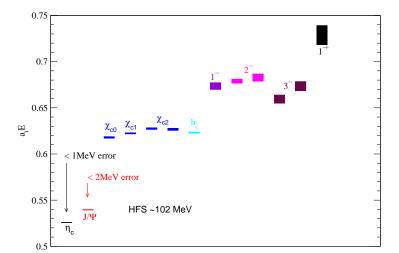
- $12^3 \times 96$. S-wave (η_c) and P-wave (h_c) still falling as *n* increased.
- The space is large but feasible.
- This work: n = 32 on $16^3 \times 128$ lattices. Volume scaling \Rightarrow use n = 56. Running n = 64.

- m_c tuned from the η_c mass.
- $12^3 \times 96$ lattices used for testing. Preliminary results on $16^3 \times 128$ lattices.
- Results on 100 configurations with perambulators on 4 timeslices for $12^3 \times 96$; 32 configurations and perambulators on all timeslices for $16^3 \times 128$ lattices.
- Only single exponential fits to single correlators presented here.
- Chi-by-eye, no sliding window analysis in effective mass fits.
- A full variational analysis is planned.


The spectrum: preliminary η_c

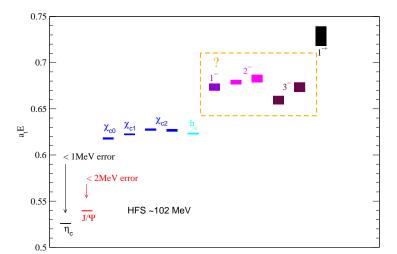
- Effective mass of the η_c
- $16^3 \times 128$ lattice, 32 configurations, perambulators on all t.
- Errors < 1%, < 1MeV on fitted mass.

The spectrum: preliminary 1⁻⁺ hybrid

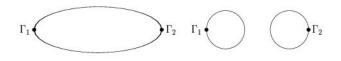

- Effective mass of the 1⁻⁺hybrid
- $16^3 \times 128$ lattice, 32 configurations, perambulators on all t.
- Errors $< 2\%, \sim 60 MeV$ on fitted mass.

The spectrum: preliminary

assuming a quark-model spin identification ...

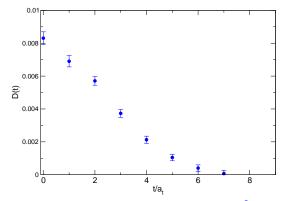

Preliminary: 32 Configurations

The spectrum: preliminary


assuming a quark-model spin identification ...

Preliminary: 32 Configurations

Including disconnected diagrams (1)

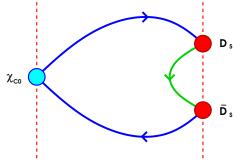

 $c\bar{c}$ interpolating operators are singlet ($\bar{c}\Gamma c$) \rightarrow bubble diagrams in Wick contractions.

OZI suppressed \Rightarrow small. Unless other nonperturbative effects play a role.

Handled easily with distillation.

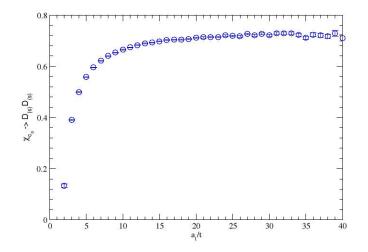
Including disconnected diagrams (2)

The disconnected contribution to η_c (12³ × 96).


• Fit (1 - D/C) to resolve the $m_{\eta_c(C-D)} - m_{\eta_c(C)}$ difference.

 Needs a variational analysis of connected correlator to fit (1 - D/C) at small time, t < 6.

• All very preliminary yet - a full analysis is underway on $16^3 \times 128$.


Including threshold effects: a start

Calculating threshold effects is (relatively) straightforward with distillation. Eg. one needs to determine the S-wave mixing

The effective mass for $\chi_{c_0} \rightarrow D_s \overline{D}_s$

On $12^3\times96$

Conclusions

- This is a first application of distillation to charmonium. Very promising already on just 32 configs. n = 64 data should improve again.
- The Hadron Spectrum Collab. is continuing to generate perambulators on all timeslices.
- The combination of anisotropic lattices, distillation and variational fitting techniques mean the orbital, radial and gluonic excitations of Charmonia can be resolved.
- Additional operators will give a definitive spin identification of calculated excited states. In progress.
- A similar analysis is in progress for the heavy-light $(D_{(s)})$ system
- Simulations at lighter sea quark masses, larger volumes etc are planned.
- Distillation allows us to investigate threshold and disconnected effects.
- GPU implementation is proving very efficient for charmonium.