Projects Details

First Results for f_B 00000 Conclusion

B-physics with dynamical domain-wall light quarks and relativistic *b*-quarks

Ruth S. Van de Water and Oliver Witzel for the RBC and UKQCD collabrations

Brookhaven National Laboratory

Lattice 2010, June 15, 2010

Projects Details

First Results for f_B 00000 Conclusion

Determination of CKM Matrix Elements

- $B \overline{B}$ -mixing allows us to determine CKM matrix elements
- Dominant contribution in SM: box diagram with top quarks

$$\frac{|V_{td}^*V_{tb}| \text{ for } B_d - \text{mixing}}{|V_{ts}^*V_{tb}| \text{ for } B_s - \text{mixing}} \Delta m_q = \frac{G_F^2 m_W^2}{6\pi^2} \eta_B S_0 m_{B_q} f_{B_q}^2 B_{B_q} |V_{tq}^*V_{tb}|^2$$

• Non-perturbative contribution: $f_q^2 B_{Bq}$

• Define the SU(3) breaking ratio $\xi^2 = f_{B_s}^2 B_{B_s} / f_{B_d}^2 B_{B_d}$

CKM matrix elements are extracted by

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \xi^2 \frac{|V_{ts}|^2}{|V_{td}|^2}$$

Phenomenological	Importance
0000	

First Results for f_B 00000 Conclusion

Constraining the CKM Unitarity Triangle

- ► The apex of the unitarity triangle is constrained by the ratio of B_s to B_d oscillation frequencies (Δm_q)
- ► Δm_q is experimentally measured to better than a percent [BABAR, Belle, CDF]
- Dominant error comes from the uncertainty on the lattice QCD calculation of the ratio ξ (~ 3%)
- A precise determination is needed to help constrain physics beyond the Standard Model

First Results for f_B 00000 Conclusion

Unitarity Fit without Semileptonic Decays

- ► A unitarity fit without V_{ub} or V_{cb} is possible [Lunghi and Soni 2009]
- Avoids 1-2 σ tension between inclusive and exclusive determinations of both V_{ub} and V_{cb}
- ▶ Requires precise determination of f_B (and also of $B \rightarrow \tau \nu$ and ΔM_s)

First Results for f_B

Conclusion

Lattice Calculations of *B*-meson Parameters

- HPQCD and FNAL-MILC result both based on the asqtad-improved staggered ensembles generated by MILC
- RBC/UKQCD result only exploratory study computed on 16³ domain-wall fermion lattices and using static approximation for the *b*-quarks

Projects Details •0000 First Results for f_B

Conclusion

Our Current *B*-Physics Projects

- Computation of B B
 -mixing and B-meson decay constants in the static limit [Talk by Y. Aoki, next]
- Tuning parameters for the relativistic heavy quark action (32³) [Talk by H. Peng, Thu, 17:20]
- Determining the B*Bπ coupling using a relativistic heavy quark action [Talk by P. Fritzsch, Tue, 9:30]
- ► Computation of B B̄-mixing and B-meson decay constants using a relativistic heavy quark action

Projects Details 00000 First Results for f_B 00000 Conclusion

Light Quark and Gluon Action

- Domain-wall fermions for the light quarks (u, d, s) [Kaplan 1992 and Shamir 1993]
 - Five dimensional formulation with an approximate chiral symmetry
 - ► Left-handed modes are bound to 4-d brane at s = 0, right-handed modes to a 4-d brane at s = L_s - 1
 - Overlap exponentially suppressed
 - Renormalization simplified due to reduced operator mixing

- Iwasaki gauge action [Iwasaki 1983]
 - Improves chiral symmetry and reduces residual quark mass when combined with domain-wall sea quarks [Y. Aoki et al. 2004]

2+1 Flavor Domain-Wall Gauge Field Configurations

L	<i>a</i> (fm)	m _l	m _s	$m_{\pi}({\sf MeV})$	approx. # configs.
24	pprox 0.11	0.005	0.040	331	1640
24	pprox 0.11	0.010	0.040	419	1420
24	pprox 0.11	0.020	0.040	558	350
32	pprox 0.08	0.004	0.030	307	600
32	pprox 0.08	0.006	0.030	366	900
32	pprox 0.08	0.008	0.030	418	550

[C. Allton et al. 2008, RBC/UKQCD in preparation]

Projects Details 00000 First Results for f_B

Conclusion

Relativistic Heavy Quark Action for the *b*-Quarks

- Relativistic Heavy Quark action developed by Christ, Li, and Lin for the *b*-quarks in 2-point and 3-point correlation functions [Christ, Li, Lin 2007; Lin and Christ 2007]
- Builds upon Fermilab approach [El Khadra, Kronfeld, Mackenzie 1997] (see also [Aoki, Kuramashi, Tominaga 2003])
- ▶ Parameters of the clover action are tuned non-perturbatively using the spin-averaged mass and the hyperfine-splitting for B_s mesons as well as the ratio $m_{\text{rest}}/m_{\text{kinetic}}$
- Once parameters are tuned for the heavy-light system, computations of the heavy-heavy system can be used to test the method
- ► RHQ action applicable for *c*-quarks, where calculations of leptonic decay constants *f_D* and *f_{D_s}* allow further checks of the method

Projects Details 00000 First Results for f_B 00000 Conclusion

Tuning the Parameters for the RHQ Action

$$S = \sum_{n,n'} \bar{\Psi}_n \left\{ m_0 + \gamma_0 D_0 - \frac{aD_0^2}{2} + \zeta \left[\vec{\gamma} \cdot \vec{D} - \frac{a\left(\vec{D}\right)^2}{2} \right] - a \sum_{\mu\nu} \frac{ic_P}{4} \sigma_{\mu\nu} F_{\mu\nu} \right\}_{n,n'} \Psi_{n'}$$

- Start from an educated guess for (m₀a, c_P, ζ)
- Compute spin-averaged mass $(m_{B_s} + 3m_{B_s^*})/4$ hyperfine-splitting $(m_{B_s^*} - m_{B_s})$ ratio $m_{B_s^{\text{rest}}}/m_{B_s^{\text{kinetic}}}$ or $m_{\Upsilon^{\text{rest}}}/m_{\Upsilon^{\text{kinetic}}}$
- Iterate until agreement with [PDG] spin-averaged mass 5403.1(1.1) MeV hyperfine-splitting 49.0(1.5) MeV ratio equals 1
- ► Chiral value on 24^3 (a = 0.11fm): (m_0a , c_P , ζ) = (7.38(11), 3.89(49), 4.19(4)) [M. Li 2009]

- Computation of m_B is a "prediction"
- Simplest test of the parameter tuning
- Statistical errors are small: m_B : 0.08% 0.13% and Φ_B : 1.1% 2.0%
- ▶ Result for f_B is multiplicatively renormalized (1-loop) [Yamada et al. 2005] but not O(a) improved

Phenomenological	Importance
0000	

First Results for f_B 00000

Improving the Signal by Smearing of Source and Sink

Reduction of excited state contamination

Projects Details

First Results for f_B

Conclusion

Dependence on RHQ Parameters

- Decay amplitude computed on the $m_l = 0.005$ ensemble
- Varying each of the RHQ parameters by its statistical uncertainty
- No change within statistical uncertainties (of point-point data)
- Systematic uncertainty in RHQ parameters not yet estimated
- Probably a few percent uncertainty in f_B due to RHQ input parameters expected

First Results for f_B 00000 Conclusion

Discretization Errors for Relativistic Heavy Quarks

- ▶ Matching of lattice action to continuum through *O*(*pa*)
- Errors are of $\mathcal{O}(a^2p^2)$
- ► Heavy quark mass is treated to all orders in m_ba ⇒ coefficient of the O(a²p²) error is a function of m_ba
- ► This function is bounded to be ≤ O(1) [El Khadra, Kronfeld, Mackenzie 1997]
- Improve heavy-light current by rotating of *b*-quark; rotation parameter *d*₁ is computed at tree-level in tadpole-improved lattice PT
- ► Heavy-light spectrum quantities can be computed with discretization errors of the same order as in light-light quantities

Projects Details

First Results for f_B 0000 Conclusion

Further Uncertainties

Uncertainty in determination of s-quark mass

Controlled linear interpolation between two data points in the valence sector; sea-quark dependence expected to be small

Renormalization factors

Needed for matching lattice operator to continuum operator; computation will use 1-loop tadpole-improved lattice PT [Yamada et al. 2005]

Chiral extrapolation

Performed using additional partially quenched data and heavy-light meson $\chi \mathrm{PT}$

Continuum extrapolation

Use two different lattice spacings

Phenomenological	Importance
0000	

First Results for f_B

Conclusion •00

$B^0 - \overline{B^0}$ mixing matrix element calculation

- Location of four-quark operator is fixed
- ► Location of *B*-mesons is varied over all possible time slices
- Need: one point-source light quark and one point-source heavy quark originating form operator location
- Propagators can be used for B- and \overline{B} -meson
- Project out zero-momentum component using a Gaussian sink
- Generation of light quark propagators finished to more than 50%
- Computation of $\xi = f_{B_s}^2 B_{B_s} / f_{B_d}^2 B_{B_d}$ should be most reliable

First Results for f_B 00000

Tentative Error Budget

	f _B	ξ
statistics	3%	3%
chiral extrapolation	3%	2%
uncertainty in $g_{B^*B\pi}$	1%	1%
renormalization factors	5%	2%
scale and quark mass uncertainties	2%	1%
finite volume error	1%	0.5%
(heavy-quark) discretization	2%	1%
total	7%	4%

- Conservative estimate based on comparison with static result and the work of other collaborations — hopefully we do even better
- ▶ Expect competitive results to [FNAL-MILC 2008] and [HPQCD 2009]

Projects Details

First Results for f_B 00000 Conclusion 000

Conclusion

- ► This project aims for a precise determination of neutral *B*-meson mixing parameters and decay constants f_{B_d}, f_{B_s}
- Results will place an important constraint in the quark flavor sector when used in unitarity triangle analysis
- \blacktriangleright Work in progress and we expect to have preliminary results for $f_{B_d}, \ f_{B_s}$ and ξ soon