Autocorrelations in Hybrid Monte Carlo Simulations

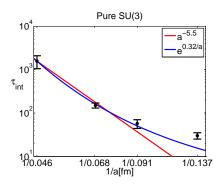
Francesco Virotta¹ Stefan Schaefer² Rainer Sommer¹

 $^1 {\sf NIC}, {\sf DESY}$ Zeuthen

²Humboldt Universität zu Berlin

Lattice 2010

Problem



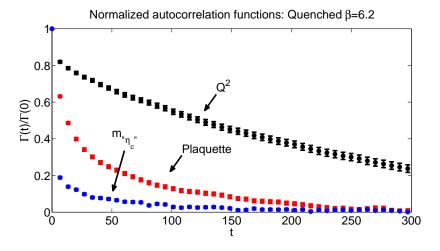
Summary of last year's talk [S.Schaefer]

- Lattice simulations suffer from critical slowing down
- Both in pure gauge and dynamical fermions simulations
- Decoupling for Wilson loops

Here we concentrate on

- How do different observables behave?
- Hadron correlation functions, masses...

Autocorrelation for different observables at $a \sim 0.07 { m fm}$



- Autocorrelation function $\Gamma_O(t) = \langle (O(t) \bar{O})(O(0) \bar{O}) \rangle$
- Observables couple to the slow modes
- Strength of coupling is observable dependent

Autocorrelation functions of Markov Chains

► For algorithms with detailed balance

$$egin{aligned} \Gamma_O(t) &= \langle (O(t) - ar{O})(O(0) - ar{O})
angle \ &= \sum_{n \geq 1} (\lambda_n)^t [\eta_n(O)]^2 \end{aligned}$$

O is a primary observable, secondary: [U.Wolff '06]
 λ_n are (real) eigenvalues of

▶ $\eta_n(O)$ denotes the "matrix element" for the *n*-th mode

$$\eta_n(O) = \sum_q \chi_n(q) \sqrt{\Pi(q)} (O(q) - \bar{O})$$

Autocorrelation functions of Markov Chains II

$$\Gamma_O(t) = \sum_{n \ge 1} (\lambda_n)^t [\eta_n(O)]^2$$

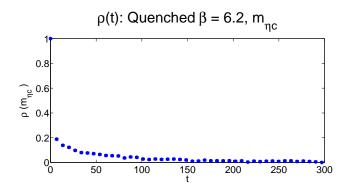
▶
$$|\Gamma_O(t)| \leq \text{const.} e^{-t/ au_{\mathsf{exp}}}$$
, where $au_{\mathsf{exp}}^{-1} = -\log(\lambda_1)$

- In general all modes contribute to F
- Symmetries can give selection rules:
 - The slowest mode can be different:

 $au_{exp}(Parity +) \neq au_{exp}(Parity -)$

- In general one sees $au_{ ext{exp}}(Q^2) \sim rac{1}{2} au_{ ext{exp}}(Q)$
- $\langle O(\text{Parity -}) \rangle = 0$, useful for correctness checks
- We restrict ourselves to parity even observables

Setup: Quenched approximation



- Quenched a = 0.066 fm, $\rho(t) = \Gamma(t)/\Gamma(0)$
- Effective mass of " η_c " averaged over a plateau
- Correlators from noise sources
- Autocorrelation function non-negligible up to large times
- Worries: undetected contributions from very long tail

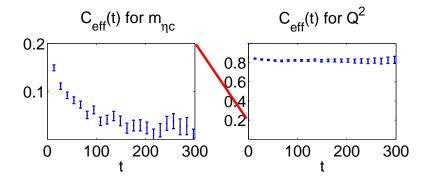
Normalized amplitude of the slow mode

The contribution of the slow mode to \(\rho_O\)

$$ho_O(t) \sim e^{-t/ au_{ ext{exp}}} [\eta_1(O)]^2 ext{ as } t o \infty$$

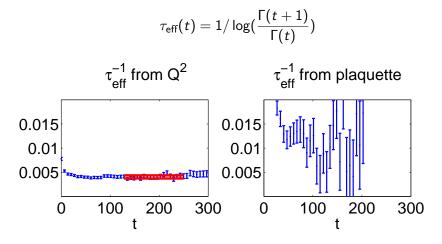
► An effective amplitude can be extracted ⇒ "Matrix element"

$$C_{\rm eff}(t) =
ho(t) e^{t/ au_{
m eff}(t)} \underset{t \to \infty}{\sim} [\eta_1(O)]^2$$



Extracting $\tau_{\rm eff}$ from a plateau

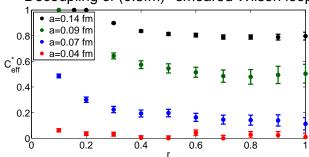
• An effective τ_{exp} is needed \Rightarrow "Effective mass"



Slowing down most prominent for the topological charge

Other observables could be used: need much longer history

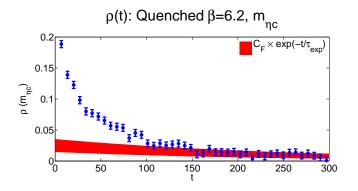
a dependence of $C_{\rm eff}$ and decoupling of Wilson loops



Decoupling of (0.5fm)² smeared Wilson loop

• Define $C_{\text{eff}}^*(r) = C_{\text{eff}}(r\tau_{\text{exp}})$

Small contribution from the slow mode?



• $\tau_{int}(O, W) = \frac{1}{2}\rho_O(0) + \sum_{t=1}^W \rho_O(t)$

 \blacktriangleright With W=250 bias from neglecting the tail up to $\sim 15\%$

- Worst case scenario from various quenched correlators (D_s, "η_c", Φ) at this β value
- \blacktriangleright Total contribution of slow mode to $\tau_{\rm int}$ is $\sim 50\%$

Improved error estimates and upper bound

• The uncertainty of \overline{O} from N measurements is

$$(\delta \bar{O})^2 = \frac{\sigma_O^2}{N} 2\tau_{\rm int}(O)$$

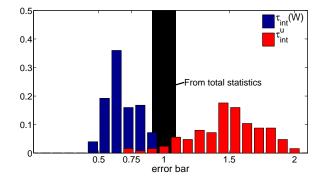
Upper bound for \(\tau_{int}\)

$$au_{\text{int}}^u(O) = au_{\text{int}}(O, W_u) +
ho_O(W_u) au_{\text{exp}}$$

- W_u chosen such that $ho(W_u) > 2.5 \ \delta
 ho(W_u)$
- τ_{exp} either measured or given by model
- $\tau_{int}(O) \leq \tau_{int}^u(O)$, for algo. with detailed balance

Our proposal: use τ_{int}^u for a safe error estimate

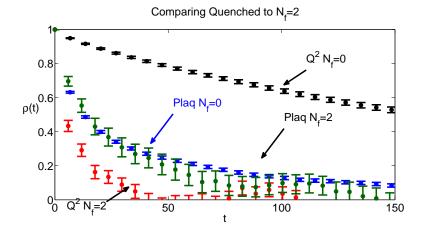
Upper Bound: works with limited statistics?



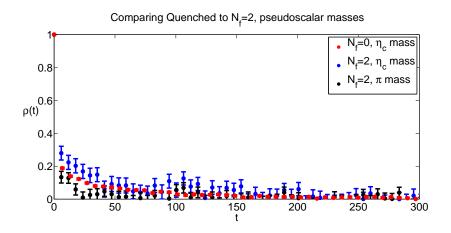
- Many replicae from a single chain (each $\approx 2500 MD$)
- The upper bound works
- Safer than standard method
- In this case study error bars at worst doubled

Results: $N_f = 2$

- Quenched: $r_0/a = 7.38$
- $N_f = 2$ from CLS dataset: ~ 5000 MDR
- ▶ $N_f = 2$ we have $r_0/a = 7.05$ [B.Leder, Lattice10]

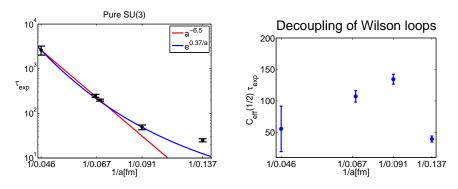


Results: $N_f = 2 \text{ II}$



• " η_c " mass from noise sources (5 in quenched and 10 in $N_f = 2$)

Conclusions



- The slowing down is an issue that still needs a cure
- Needs careful error estimate, taking into account slow modes
- At a ≈ 0.07 fm there is a ~ 1/50 suppression for hadronic observables
- The brick wall presently somewhere at $a \sim 0.04$ fm