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Problem
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Summary of last year's talk [S.Schaefer]
» Lattice simulations suffer from critical slowing down
» Both in pure gauge and dynamical fermions simulations
» Decoupling for Wilson loops
Here we concentrate on
» How do different observables behave?
» Hadron correlation functions, masses. . .



Autocorrelation for different observables at a ~ 0.07fm

Normalized autocorrelation functions: Quenched [3=6.2
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» Autocorrelation function Io(t) = ((O(t) — 0)(0(0) — 0))
» Observables couple to the slow modes
» Strength of coupling is observable dependent



Autocorrelation functions of Markov Chains

» For algorithms with detailed balance

Fo(t) = ((O(t) - 0)(O ( ) = 0))
Z [77n

n>1

» O is a primary observable, secondary: [U.Wolff '06]

» )\, are (real) eigenvalues of

T(q'.q) = [N(g)]*M(q" — g)[N(q)]"/?
TXn=Xnxn, MN(q)= ( )

» 1,(O) denotes the “matrix element” for the n-th mode

=Y xn(q)y/N(q)(O(q) — 0)



Autocorrelation functions of Markov Chains Il

Fo(t) = > _(An) [m(O)®

n>1

> |o(t)] < const.e™/Tv, where 751 = — log(\1)
» In general all modes contribute to '
» Symmetries can give selection rules:

» The slowest mode can be different:
Texp(Parity +) # Texp(Parity -)

> In general one sees Ty (Q%) ~ 276(Q)
» (O(Parity -)) = 0, useful for correctness checks

» We restrict ourselves to parity even observables



Setup: Quenched approximation

p(t): Quenched 3 =6.2, mn
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Quenched a = 0.066fm, p(t) = I'(t)/I(0)

Effective mass of "7." averaged over a plateau
Correlators from noise sources

Autocorrelation function non-negligible up to large times
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Worries: undetected contributions from very long tail



Normalized amplitude of the slow mode
» The contribution of the slow mode to po
po(t) ~ e e[ (O) as t — oo
» An effective amplitude can be extracted = “Matrix element”

Cert(t) = p(t)e/™ (D~ [n(0)]?
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Extracting 7. from a plateau

> An effective Texp is needed = “Effective mass”

Mt+1)

Tefr(t) = 1/ log( 10 )
T;]}r from Q2 r;]}f from plaquette
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» Slowing down most prominent for the topological charge
» Other observables could be used: need much longer history



a dependence of Cqr and decoupling of Wilson loops

Decoupling of (0.5fm)2 smeared Wilson loop
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> Define C(r) = Cerr(rTexp)



Small contribution from the slow mode?

p(t): Quenched (=6.2, mrIC
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> Tine(0, W) = 3p0(0) + X21%; po(t)
» With W = 250 bias from neglecting the tail up to ~ 15%

» Worst case scenario from various quenched correlators
(Ds,"nc", ®) at this 5 value
» Total contribution of slow mode to Tint is ~ 50%



Improved error estimates and upper bound

The uncertainty of O from N measurements is

v

22 _ 00
(50) = W2Tint(o)

» Upper bound for 7t

7—|Lrllt(o) = Tint(ov Wu) + pO(Wu)Texp

v

W, chosen such that p(W,) > 2.5 dp(W,)
Texp €ither measured or given by model
Tint(0) < 74.(0), for algo. with detailed balance
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Our proposal: use 7. for a safe error estimate

int



Upper Bound: works with limited statistics?
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» Many replicae from a single chain (each ~ 2500MD)
» The upper bound works
» Safer than standard method

» In this case study error bars at worst doubled



Results: Ny = 2

» Quenched: ry/a=7.38
» Ny =2 from CLS dataset: ~ 5000 MDR
» N =2 we have ry/a = 7.05 [B.Leder, Latticel0]

Comparing Quenched to Nf=2
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Results: Ny = 2 [l

Comparing Quenched to Nf=2, pseudoscalar masses
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Conclusions

. Pure SU(3) . .
‘ ‘ ‘ Decoupling of Wilson loops
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» The slowing down is an issue that still needs a cure

» Needs careful error estimate, taking into account slow modes

» At a = 0.07 fm there is a ~ 1/50 suppression for hadronic
observables

» The brick wall presently somewhere at a ~ 0.04 fm



