
Autocorrelations in Hybrid Monte Carlo
Simulations

Francesco Virotta1 Stefan Schaefer2 Rainer Sommer1

1NIC,DESY Zeuthen

2Humboldt Universität zu Berlin

LPHAA
Collaboration

Lattice 2010



Problem
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Summary of last year’s talk [S.Schaefer]
I Lattice simulations suffer from critical slowing down
I Both in pure gauge and dynamical fermions simulations
I Decoupling for Wilson loops

Here we concentrate on
I How do different observables behave?
I Hadron correlation functions, masses. . .



Autocorrelation for different observables at a ∼ 0.07fm
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I Autocorrelation function ΓO(t) = 〈(O(t)− Ō)(O(0)− Ō)〉
I Observables couple to the slow modes
I Strength of coupling is observable dependent



Autocorrelation functions of Markov Chains
I For algorithms with detailed balance

ΓO(t) = 〈(O(t)− Ō)(O(0)− Ō)〉

=
∑
n≥1

(λn)t [ηn(O)]2

I O is a primary observable, secondary: [U.Wolff ’06]
I λn are (real) eigenvalues of

T (q′, q) = [Π(q′)]−1/2M(q′ ← q)[Π(q)]1/2

Tχn = λnχn , Π(q) = χ20(q)

I ηn(O) denotes the “matrix element” for the n-th mode

ηn(O) =
∑

q
χn(q)

√
Π(q)(O(q)− Ō)



Autocorrelation functions of Markov Chains II

ΓO(t) =
∑
n≥1

(λn)t [ηn(O)]2

I |ΓO(t)| ≤ const.e−t/τexp , where τ−1exp = − log(λ1)

I In general all modes contribute to Γ
I Symmetries can give selection rules:

I The slowest mode can be different:

τexp(Parity +) 6= τexp(Parity -)

I In general one sees τexp(Q2) ∼ 1
2τexp(Q)

I 〈O(Parity -)〉 = 0, useful for correctness checks
I We restrict ourselves to parity even observables



Setup: Quenched approximation
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I Quenched a = 0.066fm, ρ(t) = Γ(t)/Γ(0)

I Effective mass of ”ηc” averaged over a plateau
I Correlators from noise sources
I Autocorrelation function non-negligible up to large times
I Worries: undetected contributions from very long tail



Normalized amplitude of the slow mode
I The contribution of the slow mode to ρO

ρO(t) ∼ e−t/τexp [η1(O)]2 as t →∞

I An effective amplitude can be extracted ⇒ “Matrix element”

Ceff(t) = ρ(t)et/τeff(t) ∼
t→∞

[η1(O)]2
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Extracting τeff from a plateau
I An effective τexp is needed ⇒ “Effective mass”

τeff(t) = 1/ log(
Γ(t + 1)

Γ(t)
)
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I Slowing down most prominent for the topological charge
I Other observables could be used: need much longer history



a dependence of Ceff and decoupling of Wilson loops
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a=0.14 fm
a=0.09 fm
a=0.07 fm
a=0.04 fm

I Define C∗eff(r) = Ceff(rτexp)



Small contribution from the slow mode?
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I τint(O,W ) = 1
2ρO(0) +

∑W
t=1 ρO(t)

I With W = 250 bias from neglecting the tail up to ∼ 15%

I Worst case scenario from various quenched correlators
(Ds , ”ηc”,Φ) at this β value

I Total contribution of slow mode to τint is ∼ 50%



Improved error estimates and upper bound

I The uncertainty of Ō from N measurements is

(δŌ)2 =
σ2O
N 2τint(O)

I Upper bound for τint

τu
int(O) = τint(O,Wu) + ρO(Wu)τexp

I Wu chosen such that ρ(Wu) > 2.5 δρ(Wu)

I τexp either measured or given by model
I τint(O) ≤ τu

int(O), for algo. with detailed balance

Our proposal: use τ u
int for a safe error estimate



Upper Bound: works with limited statistics?
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I Many replicae from a single chain (each ≈ 2500MD)
I The upper bound works
I Safer than standard method
I In this case study error bars at worst doubled



Results: Nf = 2
I Quenched: r0/a = 7.38
I Nf = 2 from CLS dataset: ∼ 5000 MDR
I Nf = 2 we have r0/a = 7.05 [B.Leder, Lattice10]
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Results: Nf = 2 II
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I ”ηc” mass from noise sources (5 in quenched and 10 in
Nf = 2)



Conclusions
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I The slowing down is an issue that still needs a cure
I Needs careful error estimate, taking into account slow modes
I At a ≈ 0.07 fm there is a ∼ 1/50 suppression for hadronic

observables
I The brick wall presently somewhere at a ∼ 0.04 fm


