New approach for studying large numbers of fermions in the unitary regime

Michael G. Endres*

Columbia University

Lattice 2010 Villasimius, Sardinia June 18, 2010

*in collaboration with David B. Kaplan, Jong-Wan Lee and Amy N. Nicholson

Michael G. Endres (Columbia University) New approach for studying large numbers of t

June 18, 2010 1 / 18

2 Lattice construction & simulation method

3 Lattice parameter tuning

Motivation

Unitary fermions

- strongly coupled system of two-component nonrelativistic fermions
- two particle s-wave phase shift: $p \cot \delta = 0$
- Such systems can be explored experimentally using ultra-cold atoms
- Natural starting point for lattice effective field theory approach to nuclear physics
 - nucleon-nucleon s-wave scattering lengths are large compared to the range of interaction

Introduction

Quantum Monte Carlo methods for unitary fermions

• Fixed Node Greens Function Monte Carlo – variational

Chang, Pandharipande, Carlson, and Schmidt (2004)

• Diagrammatic Determinant Monte Carlo

Bourovski, Prokof'ev and Svistunov (2004)

• Determinantal Monte Carlo

Bulgac, Drut and Magierski (2006)

• Fixed Node Diffusion Monte Carlo - variational

Blume, von Stecher, and Greene (2007)

٩

Can we apply lattice QCD techniques to study strongly interacting nonrelativistic fermions?

Action

Starting point:

- non-relativistic action for spin 1/2 fermions
- zero-range 2-body (3-body) interactions
- no chemical potential; finite density from many fermion correlators

$$\mathcal{L} = ar{\psi}\left(\partial_{ au} - rac{
abla^2}{2M}
ight)\psi + C_0(ar{\psi}\psi)^2$$

Naive discretization à la Kaplan & Chen (2003):

- $\partial_{\tau} \rightarrow$ standard forward difference
- $\nabla^2 \rightarrow$ standard lattice Laplacian
- attractive split-point interaction: $(\bar{\psi}\psi)^2 \rightarrow (\bar{\psi}_{\tau}\psi_{\tau-1})^2$

Action

Starting point:

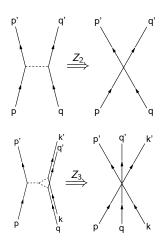
- non-relativistic action for spin 1/2 fermions
- zero-range 2-body (3-body) interactions
- no chemical potential; finite density from many fermion correlators

$$\mathcal{L} = \bar{\psi} \left(\partial_{\tau} - \frac{\nabla^2}{2M} \right) \psi + C_0 (\bar{\psi} \psi)^2$$

Parameter tuning à la Kaplan & Chen (2003):

• coupling C₀ related to two particle s-wave scattering length by evaluating 2-fermion scattering amplitude at zero momentum

Interactions



p-body interactions introduced via Z_p (p = 2, 3...) auxiliary fields (ϕ)

- reduce action to fermion bilinears (necessary for Monte Carlo studies)
- *p*-body interactions requires at least *p* fermion species

$$\mathcal{L} \to \bar{\psi} \underbrace{\left(\partial_{\tau} - \frac{\nabla^2}{2M} + \sqrt{C_0}\phi\right)}_{\mathcal{K}(\phi)} \psi$$

Fermion operator

$$\mathcal{K}(\phi) = \begin{pmatrix}
D & X(0) & 0 & 0 & \dots & 0 \\
0 & D & X(1) & 0 & \dots & 0 \\
0 & 0 & D & X(2) & \dots & 0 \\
0 & 0 & 0 & D & \dots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & X(T-1) \\
-X(T) & 0 & 0 & 0 & \dots & D
\end{pmatrix}$$

$$D = 1 - \frac{\nabla^2}{2M} \qquad X(\tau) = 1 - \phi(\tau)$$

Auxiliary field dependence in off-diagonal components of fermion matrix

Fermion operator

$$\mathcal{K}(\phi) = \begin{pmatrix}
D & X(0) & 0 & 0 & \dots & 0 \\
0 & D & X(1) & 0 & \dots & 0 \\
0 & 0 & D & X(2) & \dots & 0 \\
0 & 0 & 0 & D & \dots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & X(T-1) \\
-X(\mathcal{T})^{\bullet 0} & 0 & 0 & 0 & \dots & D
\end{pmatrix}$$

$$D = 1 - \frac{\nabla^2}{2M} \qquad X(\tau) = 1 - \phi(\tau)$$

Key ingredient to our approach: *instead of anti-periodic boundary conditions in time direction, impose open boundary conditions*

Fermion determinant & propagators

- Auxiliary field-independent fermions determinant
 - \implies full simulation = quenched simulation (auxiliary fields are action-less)

$$\det K(\phi) = \det D^T$$

- No fermion loops in time direction
 - \implies simple form for propagators

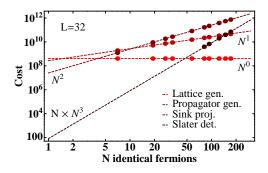
$$K^{-1}(\tau, 0) = D^{-1}X(\tau - 1)D^{-1}\dots D^{-1}X(0)D^{-1}$$

Simulation method

Procedure: Time evolution of single particle wave functions on random background configurations

For each configuration: Initialize N sources at time zero ψ_i^{source} (i = 1, ..., N)For each source: Compute $\psi_i(0) = D^{-1}\psi_i^{source}$ For each time slice τ thereafter: Generate random auxiliary fields at time slice Compute $\psi_i(\tau) = D^{-1}X(\tau)\psi_i(\tau - 1)$ using FFTs Project propagators onto single/multi-particle sinks Perform contractions (e.g. Slater determinants)

Simulation cost



- Scaling with space-time volume: $T \times L^3 \log L^3$
- Trivial parallelization: sequential configurations have zero correlation
 ⇒ can run independent streams on different nodes

Understanding dependence on b_s and $b_{ au}$

Free fermion spectrum:

$$E_{1-particle} = \frac{\mathbf{p}^2}{2M} - \left(\frac{b_\tau}{8M^2} + \frac{b_s^2}{24M}\right) \sum_j p_j^4 + \dots$$

Two particle ground state (infinite volume limit, $a >> r_0$):

$$E_{2-particle}^{(gnd)} = \frac{1}{Ma^2} \left[1 + \frac{r_0}{a} + \frac{5}{4} \left(\frac{r_0^2}{a^2} + \frac{b_s^2}{5a^2} + \frac{b_\tau}{Ma^2} \right) + \dots \right]$$
$$a \leftrightarrow C_0 , \qquad r_0 \sim \mathcal{O}(b_s)$$

Lattice construction & simulation method

Understanding dependence on b_s and b_{τ}

Free fermion spectrum:

$$E_{1-particle} = \frac{\mathbf{p}^2}{2M} - \left(\frac{b_\tau}{8M^2} + \frac{b_s^2}{24M}\right) \sum_j p_j^4 + \dots$$

Two particle ground state (infinite volume limit, $a >> r_0$):

$$E_{2-particle}^{(gnd)} = \frac{1}{Ma^2} \left[1 + \frac{r_0}{a} + \frac{5}{4} \left(\frac{r_0^2}{a^2} + \frac{b_s^2}{5a^2} + \frac{b_\tau}{Ma^2} \right) + \dots \right]$$

Can we eliminate all discretization errors?

Understanding dependence on b_s and b_{τ}

Free fermion spectrum:

$$E_{1-particle} = \frac{\mathbf{p}^2}{2M} - \left(\frac{b_\tau}{8M^2} + \frac{b_s^2}{24M}\right) \sum_j p_j^4 + \dots$$

Two particle ground state (infinite volume limit, $a >> r_0$):

$$E_{2-particle}^{(gnd)} = \frac{1}{Ma^2} \left[1 + \frac{r_0}{a} + \frac{5}{4} \left(\frac{r_0^2}{a^2} + \frac{b_s^2}{5a^2} + \frac{b_\tau}{Ma^2} \right) + \dots \right]$$

Can we control sub-leading terms in the effective range expansion?

Understanding dependence on b_s and $b_{ au}$

Can we eliminate all discretization errors? YES!

 Simulation strategy allows us to use a "perfect" dispersion relation

$$rac{-
abla^2}{2M}\longrightarrow e^{\mathbf{p}^2/(2M)}-1$$

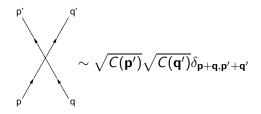
Can we control sub-leading terms in the effective range expansion? YES!

• Simulation strategy allows us to incorporate appropriate derivative interactions to all orders in **p**²

$$\mathcal{L} \supset \bar{\psi} \sqrt{C(\nabla^2)} \psi \bar{\psi} \sqrt{C(\nabla^2)} \psi$$

Lattice construction & simulation method

Improved two-body interaction



- Express C as a power series in \mathbf{p}^2
- Any basis set of operators acceptable; we choose:

$$C(\mathbf{p}) = \frac{4\pi}{M} \sum_{n} C_{2n} O_{2n}(\mathbf{p}) , \quad O_{2n}(\mathbf{p}) = M^n \left(1 - e^{-\mathbf{p}^2/M} \right)^n \approx \mathbf{p}^{2n}$$

Lattice parameter tuning

Two fermion transfer matrix

$$e^{-HT} \sim \underline{\qquad} + \times + \times + \times + \cdots = (\underline{\qquad} + \times)^{T}$$

RHS may be interpreted as a two-fermion transfer matrix T = e^{-H}
T can be diagonalized giving us the two-fermion spectrum

Zero center of momentum eigenvalues ($p = \sqrt{ME}$) satisfy:

$$\sum_n C_{2n} I_{2n}(p) = 1 \;, \quad I_{2n}(p) = rac{1}{V} \sum_{\mathbf{q}} rac{O_{2n}(\mathbf{q})}{e^{(-p^2 + \mathbf{q}^2)/M} - 1}$$

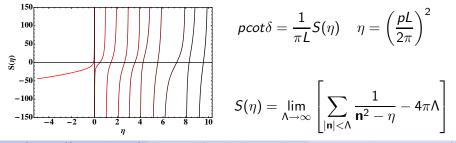
 \implies Now we only need a strategy for tuning Cs...

Luscher's formula

Goal: Relate C-coefficients to s-wave scattering parameters (a, r₀, etc.)

$$p\cot\delta = -\frac{1}{a} + \frac{1}{2}r_0p^2 + \dots$$

Method: Use Luscher's formula to relate the exact zero CM solutions to two-fermion transfer matrix to continuum Luscher energies

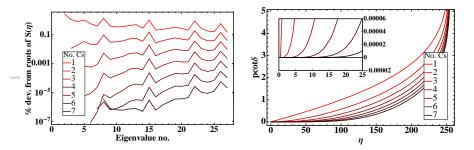


Michael G. Endres (Columbia University) New approach for studying large numbers of 1 June 18, 2010 15 / 18

Parameter tuning: one of several methods

- Determine first k solutions p_i^* (i = 1, ..., k) to Luscher's formula
- Solve the linear set of equations: $\sum_{n=0}^{k-1} C_{2n} I_{2n}(p_i^*) = 1$ for each i

Example: $p \cot \delta = 0$ (unitary fermions)



Unitary fermions

Talk by J-W. Lee (Next-to-Next!)

- unitary fermions in a finite box
- measurement of energies for up to 38 paired fermions (first three shells filled)
- measurement of a universal quantities known as the Bertsch parameter and pairing gap

Talk by A. N. Nicholson (Next!)

- unitary fermions in a harmonic trap
- precision measurement of energies for up to 20 paired fermions
- independent measurement of the Bertsch parameter and pairing gap

Conclusion

- New approach for numerically simulating strongly interacting nonrelativistic fermions
 - full simulation same as a quenched simulation
 - discretization errors removed to all orders
 - $p \cot \delta$ tunable to arbitrary order in p^2
- Ideal for numerical studies of unitary fermions in a finite box and harmonic trap (both underway)
- Possible future applications in nuclear physics
 - start with small nuclei: deuteron, triton, alpha, etc.
 - requires introduction of physical effective range, spin flip interactions, three-body interactions, etc.