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Motivations

In order to compute three loop renormalization constants we can rely on
continuum computation of anomalous dimension, provided we have the matching
of the lattice coupling constant to the one in the continuum. Unfortunately, for
Symanzik action is known only at one loop (we need two loops).

Power series in the bare coupling of physical quantities are poorly convergent.
Using a renormalized coupling constant enhances the predictive power of lattice
perturbation theory.

More generally, this is an example of matching between different renormalization
schemes which entails determination of β-function, a topical interest nowadays.
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Matching different renormalization schemes requires a matching of coupling
constants. Two loop form of the expansion is familiar:

α(sµ) = α′(µ) + c1(s)α
′(µ)2 + c2(s)α

′(µ)3 + . . .

with

c1(s) = −2b0 log s + 2b0 log
Λ

Λ′

c2(s) = c1(s)
2 − 2b1 log s + 2b1 log

Λ

Λ′
+

b′
2 − b2

b0

While b0 and b1 are universal, b2 and the Λ’s are scheme dependent!

This is the link with the β-function: knowledge of these quantities in different
schemes allow to change from one to another.
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Tree Level Symanzik improved action

We are interested in computing the matching between αMS and α0 for TL
Symanzik improved gauge action/Wilson nf = 2 fermions.
We recall that this gauge action is defined as

SG =
1

g 2



C0

∑

plaquette

TrUpl + C1

∑

rectangle

TrUrtg





where C1 = − 1
12 and C0 = 1 − 8c1.

Our strategy: we exploit the knowledge of the matching between αV and αMS , we
numerically compute the matching between αV and α0 and we finally perform the
matching between αMS and α0:

αV = α0 + c1α
2
0 + c2α

3
0

= αMS + d1α
2
MS

+ d2α
3
MS

αMS = α0 + (d1 − c1)α
2
0 + (2c2

1 − c2 − 2c1d1 + d2)α
3
0.
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Static quark potential

Static quark potential is the quantity which describes the interaction energy of an
infinitely heavy qq̄ pair.
It consist of 2 terms, a short distance Coulomb potential and a long distance term
responsible for confinement.

VQCD(R) = −CF

α(R)

R
+ σR

If we restrict to the perturbation theory, only the Coulomb term survives

V (R) = −CF

αV (R)

R

In doing this, we have defined a new renormalized coupling αV (R).

One can show that αV (R) is a good expansion parameter for physical quantities,
that is, high order perturbative coefficients are small.
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The static quark potential is related to Wilson loop W (R , T ) = C exp−TV (R). To
avoid corner divergencies we extract the potential according to

V (R) = limT→∞

[

log

(

W (R , T − 1)

W (R , T )

)]

= 2δm − CF

αV (R)

R

where δm is the residual mass of the heavy quark.
We can the express the potential in terms of the lattice coupling. This reads

V (R) = 2δm −
CF

R

(

α0 + c1(R)α2
0 + c2(R)α3

0 + . . .
)

where the coefficients c1 and c2 are given by

c1(R) = 2b0 logR + 2b0 log
ΛV

Λ0

c2(R) = c1(R)2 + 2b1 log R + 2b1 log
ΛV

Λ0
+

b
(V )
2 − b

(0)
2

b0

and δm is expanded in α0 as well:

δm =
∑

n≥0

δm(n)αn
0
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Numerical Stochastic Perturbation Theory

Numerical Stochastic Perturbation Theory is numerica implementation of
Stochastic Quantization.
Introducing a new degree of freedom (t), a quantum field described by the action
S evolves according to Langevin equation

∂

∂t
φη(x , t) = −

δS [φ]

δφη(x , t)
+ η(x , t).

One recovers canonical quantization in the limit t → ∞:

lim
t→∞

〈φ(x1, t) . . . φ(xn , t)〉η = 〈φ(x1) . . . φ(xn)〉.

If φ(x , t) is expanded in series, φη(x , t) = φ
(0)
η (x , t) +

∑

n>0 gnφ
(n)
η (x , t) one

obtain a hierarchy of equations to numerically integrate.
Any observable is in turn expanded as a power series

O

[

∑

n

gnφ(n)
η (x , t)

]

=
∑

n

gnO(n)(x , t).

Since the Langevin equation is a continous time equation and the numerical
integration requires a discrete timestep τ , an extrapolation is required τ → 0.
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Details of the computation

To extract the potential we computed all W (R , T ) for R , T ≤ 16 over ∼ 150
configurations 324 at three different stochastic time steps. The extrapolation
errors at τ = 0 are included in the indetermination of the results.

Given the finite lattice size nature of our computation, we can not actually take
the T → ∞ limit and the results are distorted by lattice artifacts. We can anyway
consider an interval of R such that T > R (T/R ∼ 2.5) but R not too small
(R ≥ 3).

We must consider both systematic and statistical errors. When the systematic
errors are clearly distinguishible from statistical ones, we consider a fixed lattice
artifact approach and fit the potential for T = 16, otherwise we consider different
values of T to improve the statistic.
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Tree level potential

We use tree level potential to verify the correctness of the tecnique and to
estimate the effect of the lattice artifacts.
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V (R)(0) = δm(0) −
CF

R

We estimated 3 ≤ R ≤ 6 as best fitting interval. Precision in fitting CF is a few
percent, and

δm(0) = 1.84 ± 0.01
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1 loop potential

At one loop we are able to extract the constant term of the matching and to
compare it with analitical results.

V (R)(1) = δm(1) −
CF

R
2b0

(

log R + log
ΛV

Λ0

)
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Analitical result gives

log
ΛV

Λ0
= 2.8191.

Results of the fit procedure are

δm(1) = 5.71 ± 0.01 log
ΛV

Λ0
= 2.8 ± 0.1
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2 loop potential

Extracting the second loop constant term requires the knowledge of log ΛV

Λ0
that

we get from one loop calculation, or from analitical results.

V (R)(2) = δm(2) −
CF

R

(

c1(R)2 + 2b1 log R + 2b1 log
ΛV

Λ0
+

b
(V )
2 − b

(0)
2

b0

)
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From the fit we obtain

δm(2) = 30 ± 1

b
(V )
2 − b

(0)
2

b0
= 4 ± 1
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Conclusions

We are interested in matching αMS and α0 up to two loop for Symanzik improved
gauge/Wilson nf = 2 fermions. The strategy is to compute the matching between
αV and α0 and to exploit the knowledge of the matching αV → αMS .
Current computation has been performed on 324 configurations generated years
ago, and we will pass to bigger volumes.
We verified correctness of the method for known results (log

(

ΛMS/Λ0

)

) and give
a rough estimate for the coefficient

b
(MS)
2 − b

(0)
2

b0
.

Nevertheless, the relative error is not that bad when computing (nf = 2)

αMS = α0 + 2.8037α2
0 + 11.5(±1.0)α3

0
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